These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12909085)

  • 1. Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells.
    Nicholls DG; Vesce S; Kirk L; Chalmers S
    Cell Calcium; 2003; 34(4-5):407-24. PubMed ID: 12909085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate.
    Jekabsons MB; Nicholls DG
    J Biol Chem; 2004 Jul; 279(31):32989-3000. PubMed ID: 15166243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.
    Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S
    J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate excitotoxicity and neuronal energy metabolism.
    Nicholls DG; Budd SL; Castilho RF; Ward MW
    Ann N Y Acad Sci; 1999; 893():1-12. PubMed ID: 10672225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells.
    Budd SL; Nicholls DG
    J Neurochem; 1996 Dec; 67(6):2282-91. PubMed ID: 8931459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells.
    Ward MW; Rego AC; Frenguelli BG; Nicholls DG
    J Neurosci; 2000 Oct; 20(19):7208-19. PubMed ID: 11007877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria control ampa/kainate receptor-induced cytoplasmic calcium deregulation in rat cerebellar granule cells.
    Rego AC; Ward MW; Nicholls DG
    J Neurosci; 2001 Mar; 21(6):1893-901. PubMed ID: 11245674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures.
    Nicholls DG
    Curr Mol Med; 2004 Mar; 4(2):149-77. PubMed ID: 15032711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity.
    Nicholls DG; Johnson-Cadwell L; Vesce S; Jekabsons M; Yadava N
    J Neurosci Res; 2007 Nov; 85(15):3206-12. PubMed ID: 17455297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs).
    Rueda CB; Llorente-Folch I; Traba J; Amigo I; Gonzalez-Sanchez P; Contreras L; Juaristi I; Martinez-Valero P; Pardo B; Del Arco A; Satrustegui J
    Biochim Biophys Acta; 2016 Aug; 1857(8):1158-1166. PubMed ID: 27060251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells.
    Castilho RF; Hansson O; Ward MW; Budd SL; Nicholls DG
    J Neurosci; 1998 Dec; 18(24):10277-86. PubMed ID: 9852565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress, mitochondrial function, and acute glutamate excitotoxicity in cultured cerebellar granule cells.
    Castilho RF; Ward MW; Nicholls DG
    J Neurochem; 1999 Apr; 72(4):1394-401. PubMed ID: 10098841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose deprivation produces a prolonged increase in sensitivity to glutamate in cultured rat cortical neurons.
    Vergun O; Han YY; Reynolds IJ
    Exp Neurol; 2003 Oct; 183(2):682-94. PubMed ID: 14552910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis.
    Budd SL; Nicholls DG
    J Neurochem; 1996 Jan; 66(1):403-11. PubMed ID: 8522981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular survival pathways against glutamate receptor agonist excitotoxicity in cultured neurons. Intracellular calcium responses.
    Marini AM; Ueda Y; June CH
    Ann N Y Acad Sci; 1999; 890():421-37. PubMed ID: 10668447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEK inhibition exacerbates ischemic calcium imbalance and neuronal cell death in rat cortical cultures.
    Franceschini D; Giusti P; Skaper SD
    Eur J Pharmacol; 2006 Dec; 553(1-3):18-27. PubMed ID: 17097633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel.
    Kannurpatti SS; Joshi PG; Joshi NB
    Neurochem Res; 2000 Dec; 25(12):1527-36. PubMed ID: 11152381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitotoxicity and mitochondria.
    Nicholls DG; Budd SL; Ward MW; Castilho RF
    Biochem Soc Symp; 1999; 66():55-67. PubMed ID: 10989657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism.
    El Idrissi A; Trenkner E
    J Neurosci; 1999 Nov; 19(21):9459-68. PubMed ID: 10531449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute glutathione depletion restricts mitochondrial ATP export in cerebellar granule neurons.
    Vesce S; Jekabsons MB; Johnson-Cadwell LI; Nicholls DG
    J Biol Chem; 2005 Nov; 280(46):38720-8. PubMed ID: 16172117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.