BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12909104)

  • 1. Electrodialysis and nanofiltration of surface water for subsequent use as infiltration water.
    Van der Bruggen B; Milis R; Vandecasteele C; Bielen P; Van San E; Huysman K
    Water Res; 2003 Sep; 37(16):3867-74. PubMed ID: 12909104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration.
    Van der Bruggen B; Koninckx A; Vandecasteele C
    Water Res; 2004 Mar; 38(5):1347-53. PubMed ID: 14975668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regeneration of brewery waste water using nanofiltration.
    Braeken L; Van der Bruggen B; Vandecasteele C
    Water Res; 2004 Jul; 38(13):3075-82. PubMed ID: 15261546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Pesticide pollution of groundwater and drinking water by the processes of artificial groundwater enrichment or coastal filtration: underrated sources of contamination].
    Mathys W
    Zentralbl Hyg Umweltmed; 1994 Dec; 196(4):338-59. PubMed ID: 7748439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of F-specific RNA bacteriophages in artificial recharge of groundwater--a field study.
    Niemi RM; Kytövaara A; Pääkkönen J; Lahti K
    Water Sci Technol; 2004; 50(1):155-8. PubMed ID: 15318502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ozonation of persistent DOC in municipal WWTP effluent for groundwater recharge.
    Schumacher J; Pi YZ; Jekel M
    Water Sci Technol; 2004; 49(4):305-10. PubMed ID: 15077988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water circuit closure with membrane technology in the pulp and paper industry.
    Nuortila-Jokinen J; Mänttäri M; Huuhilo T; Kallioinen M; Nyström M
    Water Sci Technol; 2004; 50(3):217-27. PubMed ID: 15461416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial recharge of groundwater through sprinkling infiltration: impacts on forest soil and the nutrient status and growth of Scots pine.
    Nöjd P; Lindroos AJ; Smolander A; Derome J; Lumme I; Helmisaari HS
    Sci Total Environ; 2009 May; 407(10):3365-71. PubMed ID: 19269680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Migration and removal of organic matters in reclaimed wastewater during groundwater recharge].
    Zhao QL; Wang LN; Xue S; Liu ZG; You SJ; Wang SH
    Ying Yong Sheng Tai Xue Bao; 2007 Jul; 18(7):1661-4. PubMed ID: 17886666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing the effluent organic matter removal of direct NF and powdered activated carbon/NF as high quality pretreatment options for artificial groundwater recharge.
    Kazner C; Wintgens T; Melin T; Baghoth S; Sharma S; Amy G
    Water Sci Technol; 2008; 57(6):821-7. PubMed ID: 18413940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane fouling and selectivity mechanisms in effluent ultrafiltration coupled with flocculation.
    Soffer Y; Ben Aim R; Adin A
    Water Sci Technol; 2005; 51(6-7):123-34. PubMed ID: 16003970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafiltration and nanofiltration in the pulp and paper industry using cross-rotational (CR) filters.
    Mänttäri M; Nyström M
    Water Sci Technol; 2004; 50(3):229-38. PubMed ID: 15461417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus removal with membrane filtration for surface water treatment.
    Dietze A; Gnirss R; Wiesmann U
    Water Sci Technol; 2002; 46(4-5):257-64. PubMed ID: 12361018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dsorption of estrone on nanofiltration and reverse osmosis membranes in water and wastewater treatment.
    Nghiem LD; Schäfer AI; Waite TD
    Water Sci Technol; 2002; 46(4-5):265-72. PubMed ID: 12361019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research experiences in direct potable water treatment using coagulation/ultrafiltration.
    Lerch A; Panglisch S; Gimbel R
    Water Sci Technol; 2005; 51(6-7):221-9. PubMed ID: 16003981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of operating parameters on the arsenic removal by nanofiltration.
    Figoli A; Cassano A; Criscuoli A; Mozumder MS; Uddin MT; Islam MA; Drioli E
    Water Res; 2010 Jan; 44(1):97-104. PubMed ID: 19781734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes.
    Rana P; Mohan N; Rajagopal C
    Water Res; 2004 Jul; 38(12):2811-20. PubMed ID: 15223274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge.
    Grünheid S; Amy G; Jekel M
    Water Res; 2005 Sep; 39(14):3219-28. PubMed ID: 16024062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal ions removal from wastewater or washing water from contaminated soil by ultrafiltration-complexation.
    Molinari R; Gallo S; Argurio P
    Water Res; 2004 Feb; 38(3):593-600. PubMed ID: 14723928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of pulp mill and oil sands industrial wastewaters by the partial spray freezing process.
    Gao W; Smith DW; Sego DC
    Water Res; 2004 Feb; 38(3):579-84. PubMed ID: 14723926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.