These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 12909314)
1. Nitric oxide inhibits ischemia/reperfusion-induced myocardial apoptosis by modulating cyclin A-associated kinase activity. Maejima Y; Adachi S; Ito H; Nobori K; Tamamori-Adachi M; Isobe M Cardiovasc Res; 2003 Aug; 59(2):308-20. PubMed ID: 12909314 [TBL] [Abstract][Full Text] [Related]
2. Cyclin A/cdk2 activation is involved in hypoxia-induced apoptosis in cardiomyocytes. Adachi S; Ito H; Tamamori-Adachi M; Ono Y; Nozato T; Abe S; Ikeda Ma ; Marumo F; Hiroe M Circ Res; 2001 Mar; 88(4):408-14. PubMed ID: 11230108 [TBL] [Abstract][Full Text] [Related]
3. Interaction of nitric oxide and endothelin-1 in ischemia/reperfusion injury of rat heart. Brunner F J Mol Cell Cardiol; 1997 Sep; 29(9):2363-74. PubMed ID: 9299360 [TBL] [Abstract][Full Text] [Related]
4. Ischemia/reperfusion-induced death of cardiac myocytes: possible involvement of nitric oxide in the coordination of ATP supply and demand during ischemia. Kawahara K; Hachiro T; Yokokawa T; Nakajima T; Yamauchi Y; Nakayama Y J Mol Cell Cardiol; 2006 Jan; 40(1):35-46. PubMed ID: 16324709 [TBL] [Abstract][Full Text] [Related]
5. Role of polyamines in myocardial ischemia/reperfusion injury and their interactions with nitric oxide. Zhao YJ; Xu CQ; Zhang WH; Zhang L; Bian SL; Huang Q; Sun HL; Li QF; Zhang YQ; Tian Y; Wang R; Yang BF; Li WM Eur J Pharmacol; 2007 May; 562(3):236-46. PubMed ID: 17382924 [TBL] [Abstract][Full Text] [Related]
7. Selective modulation of endogenous nitric oxide formation in ischemia/reperfusion injury in isolated rat hearts--effects on regional myocardial flow and enzyme release. Han H; Kaiser R; Hu K; Laser M; Ertl G; Bauersachs J Basic Res Cardiol; 2003 May; 98(3):165-74. PubMed ID: 12883834 [TBL] [Abstract][Full Text] [Related]
8. Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells. Mejía-García TA; Portugal CC; Encarnação TG; Prado MA; Paes-de-Carvalho R Cell Signal; 2013 Dec; 25(12):2424-39. PubMed ID: 23958999 [TBL] [Abstract][Full Text] [Related]
9. Effect of desflurane-induced preconditioning following ischemia-reperfusion on nitric oxide release in rabbits. Tsai SK; Lin SM; Huang CH; Hung WC; Chih CL; Huang SS Life Sci; 2004 Dec; 76(6):651-60. PubMed ID: 15567190 [TBL] [Abstract][Full Text] [Related]
10. Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. Gorbe A; Giricz Z; Szunyog A; Csont T; Burley DS; Baxter GF; Ferdinandy P Basic Res Cardiol; 2010 Sep; 105(5):643-50. PubMed ID: 20349314 [TBL] [Abstract][Full Text] [Related]
11. Modulation of the nitric oxide metabolism overcomes the unresponsiveness of the diabetic human myocardium to protection against ischemic injury. Barua A; Standen NB; Galiñanes M J Surg Res; 2011 Dec; 171(2):452-6. PubMed ID: 20869072 [TBL] [Abstract][Full Text] [Related]
12. Exogenous nitric oxide upregulates p21(waf1/cip1) in pulmonary microvascular smooth muscle cells. Stotz WH; Li D; Johns RA J Vasc Res; 2004; 41(3):211-9. PubMed ID: 15051933 [TBL] [Abstract][Full Text] [Related]
13. N(G)-nitro-L-arginine methylester, a nitric oxide synthase inhibitor, diminishes apoptosis induced by ischemia-reperfusion in the rat bladder. Saito M; Miyagawa I Neurourol Urodyn; 2002; 21(6):566-71. PubMed ID: 12382248 [TBL] [Abstract][Full Text] [Related]
14. Nitric oxide stimulates vascular endothelial growth factor production in cardiomyocytes involved in angiogenesis. Kuwabara M; Kakinuma Y; Ando M; Katare RG; Yamasaki F; Doi Y; Sato T J Physiol Sci; 2006 Feb; 56(1):95-101. PubMed ID: 16779917 [TBL] [Abstract][Full Text] [Related]
15. Nitric oxide and oxygen radicals induced apoptosis via bcl-2 and p53 pathway in hypoxia-reoxygenated cardiomyocytes. Shen J; Qiu X; Jiang B; Zhang D; Xin W; Fung PC; Zhao B Sci China C Life Sci; 2003 Feb; 46(1):28-39. PubMed ID: 20213359 [TBL] [Abstract][Full Text] [Related]
16. New advances in the protective mechanisms of acidic pH after ischemia: Participation of NO. González Arbeláez LF; Ciocci Pardo A; Burgos JI; Vila Petroff MG; Godoy Coto J; Ennis IL; Mosca SM; Fantinelli JC Arch Biochem Biophys; 2024 Aug; 758():110059. PubMed ID: 38936683 [TBL] [Abstract][Full Text] [Related]
17. [Involvement of NO-dependent mechanisms of apelin action in myocardial protection against ischemia/reperfusion damage]. Pisarenko OI; Serebriakova LI; Pelogeĭkina IuA; Studneva IM; Kkhatri DN; Tskitishvili OV; Bespalova ZhD; Az'muko AA; Sidorova MV; Pal'keeva ME; Chazov EI Kardiologiia; 2012; 52(2):52-8. PubMed ID: 22792740 [TBL] [Abstract][Full Text] [Related]
18. Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity. Wu D; Cederbaum A Toxicol Appl Pharmacol; 2006 Oct; 216(2):282-92. PubMed ID: 16938321 [TBL] [Abstract][Full Text] [Related]
19. Nitric oxide down-regulates caveolin-1 expression in rat brains during focal cerebral ischemia and reperfusion injury. Shen J; Ma S; Chan P; Lee W; Fung PC; Cheung RT; Tong Y; Liu KJ J Neurochem; 2006 Feb; 96(4):1078-89. PubMed ID: 16417587 [TBL] [Abstract][Full Text] [Related]
20. Novel role of kallistatin in protection against myocardial ischemia-reperfusion injury by preventing apoptosis and inflammation. Chao J; Yin H; Yao YY; Shen B; Smith RS; Chao L Hum Gene Ther; 2006 Dec; 17(12):1201-13. PubMed ID: 17081080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]