These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 12909561)

  • 21. Detection of somatic coliphages as indicators of faecal contamination in estuarine waters.
    Brezina SS; Baldini MD
    Rev Argent Microbiol; 2008; 40(1):72-4. PubMed ID: 18669057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determining the source of fecal contamination in recreational waters.
    Meyer KJ; Appletoft CM; Schwemm AK; Uzoigwe JC; Brown EJ
    J Environ Health; 2005; 68(1):25-30. PubMed ID: 16121484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monitoring coastal marine waters for spore-forming bacteria of faecal and soil origin to determine point from non-point source pollution.
    Fujioka RS
    Water Sci Technol; 2001; 44(7):181-8. PubMed ID: 11724486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Faecal contamination over flood events in a pastoral agricultural stream in New Zealand.
    Nagels JW; Davies-Colley RJ; Donnison AM; Muirhead RW
    Water Sci Technol; 2002; 45(12):45-52. PubMed ID: 12201126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variability of E. coli density and sources in an urban watershed.
    Wu J; Rees P; Dorner S
    J Water Health; 2011 Mar; 9(1):94-106. PubMed ID: 21301118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of group D streptococci in rivers and streams.
    Ator LL; Starzyk MJ
    Microbios; 1976; 16(64):91-104. PubMed ID: 829267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Loading of fecal indicator bacteria in North Carolina tidal creek headwaters: hydrographic patterns and terrestrial runoff relationships.
    Stumpf CH; Piehler MF; Thompson S; Noble RT
    Water Res; 2010 Sep; 44(16):4704-15. PubMed ID: 20673947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The potential for beach sand to serve as a reservoir for Escherichia coli and the physical influences on cell die-off.
    Beversdorf LJ; Bornstein-Forst SM; McLellan SL
    J Appl Microbiol; 2007 May; 102(5):1372-81. PubMed ID: 17448172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impacts of rainfall on the water quality of the Newport River Estuary (Eastern North Carolina, USA).
    Coulliette AD; Noble RT
    J Water Health; 2008 Dec; 6(4):473-82. PubMed ID: 18401112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling and evaluation of compliance to water quality regulations in bathing areas on the Daoulas catchment and estuary (France).
    Bougeard M; Le Saux JC; Jouan M; Durand G; Pommepuy M
    Water Sci Technol; 2010; 61(10):2521-30. PubMed ID: 20453324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina.
    Wendt-Potthoff K; Koschorreck M
    Microb Ecol; 2002 Jan; 43(1):92-106. PubMed ID: 11984632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of the nuisance algae, Cladophora, on Escherichia coli at recreational beaches in Wisconsin.
    Englebert ET; McDermott C; Kleinheinz GT
    Sci Total Environ; 2008 Oct; 404(1):10-7. PubMed ID: 18639919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Faecal bacteria yields in artificial flood events: quantifying in-stream stores.
    Muirhead RW; Davies-Colley RJ; Donnison AM; Nagels JW
    Water Res; 2004 Mar; 38(5):1215-24. PubMed ID: 14975655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enumeration of Escherichia coli and coliforms in surface water by multiple tube fermentation and membrane filter methods.
    Grasso GM; Sammarco ML; Ripabelli G; Fanelli I
    Microbios; 2000; 103(405):119-25. PubMed ID: 11092193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of sampling depth on Escherichia coli concentrations in beach monitoring.
    Kleinheinz GT; McDermott CM; Leewis MC; Englebert E
    Water Res; 2006 Dec; 40(20):3831-7. PubMed ID: 17049581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Serotypes of Salmonella isolated from the Luján River, Argentina].
    Anselmo RJ; Viora S; Barrios H; Terragno R; Alcaín A; Caffer MI
    Rev Latinoam Microbiol; 1999; 41(2):77-82. PubMed ID: 10970212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Penetration of E. coli and F2 bacteriophage into fish tissues.
    Fattal B; Dotan A; Tchorsh Y; Parpari L; Shuval HI
    Schriftenr Ver Wasser Boden Lufthyg; 1988; 78():27-38. PubMed ID: 3074484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The risk assessment of faecal contamination by MAR indexing of Escherichia coli.
    Gomathinayagam P; Davis AS; Hatha AA; Lakshmanaperumalsamy P
    Zentralbl Hyg Umweltmed; 1994 Oct; 196(3):279-83. PubMed ID: 7848503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative microbial risk assessment of distributed drinking water using faecal indicator incidence and concentrations.
    van Lieverloo JH; Blokker EJ; Medema G
    J Water Health; 2007; 5 Suppl 1():131-49. PubMed ID: 17890842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Library-dependent and library-independent microbial source tracking to identify spatial variation in faecal contamination sources along a Lake Ontario beach (Ontario, Canada).
    Edge TA; Hill S; Seto P; Marsalek J
    Water Sci Technol; 2010; 62(3):719-27. PubMed ID: 20706020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.