BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 12910549)

  • 1. Mechanistic limitations in the synthesis of polyesters by lipase-catalyzed ring-opening polymerization.
    Panova AA; Kaplan DL
    Biotechnol Bioeng; 2003 Oct; 84(1):103-13. PubMed ID: 12910549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymerization of propyl malolactonate in the presence of Candida rugosa lipase.
    Panova AA; Taktak S; Randriamahefa S; Cammas-Marion S; Guerin P; Kaplan DL
    Biomacromolecules; 2003; 4(1):19-27. PubMed ID: 12523841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of biodegradable polymers using biocatalysis with Yarrowia lipolytica lipase.
    Barrera-Rivera KA; Flores-Carreón A; Martínez-Richa A
    Methods Mol Biol; 2012; 861():485-93. PubMed ID: 22426736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of poly(ethylene glycol)-block-poly(caprolactone) copolymers and their applications as thermo-sensitive materials.
    Kim MS; Seo KS; Khang G; Cho SH; Lee HB
    J Biomed Mater Res A; 2004 Jul; 70(1):154-8. PubMed ID: 15174120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization, and degradation behavior of amphiphilic poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(epsilon-caprolactone).
    Miao ZM; Cheng SX; Zhang XZ; Zhuo RX
    Biomacromolecules; 2005; 6(6):3449-57. PubMed ID: 16283778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipase-mediated direct in situ ring-opening polymerization of ε-caprolactone formed by a chemo-enzymatic method.
    Zhang Y; Lu P; Sun Q; Li T; Zhao L; Gao X; Wang F; Liu J
    J Biotechnol; 2018 Sep; 281():74-80. PubMed ID: 29908204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of lipase catalyzed ring-opening polymerization of epsilon-caprolactone.
    Sivalingam G; Madras G
    Biomacromolecules; 2004; 5(2):603-9. PubMed ID: 15003027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocatalytic fabrication of fast-degradable, water-soluble polycarbonate functionalized with tertiary amine groups in backbone.
    Wang HF; Su W; Zhang C; Luo XH; Feng J
    Biomacromolecules; 2010 Oct; 11(10):2550-7. PubMed ID: 20836520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel approach to biodegradable block copolymers of epsilon-caprolactone and delta-valerolactone catalyzed by new aluminum metal complexes.
    Yang J; Jia L; Yin L; Yu J; Shi Z; Fang Q; Cao A
    Macromol Biosci; 2004 Dec; 4(12):1092-104. PubMed ID: 15586386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ring-opening bulk polymerization of epsilon-caprolactone and trimethylene carbonate catalyzed by lipase Novozym 435.
    Deng F; Gross RA
    Int J Biol Macromol; 1999; 25(1-3):153-9. PubMed ID: 10416662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics and release profiles of MPEG-PCL-MPEG microspheres containing immunoglobulin G.
    Erdemli Ö; Usanmaz A; Keskin D; Tezcaner A
    Colloids Surf B Biointerfaces; 2014 May; 117():487-96. PubMed ID: 24530344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New self-nanoemulsifying drug delivery system (SNEDDS) with amphiphilic diblock copolymer methoxy poly (ethylene glycol)-block-poly (ε-caprolactone).
    Ren F; Gao Y; Chen J; Jing Q; Yu Y
    Pharm Dev Technol; 2013; 18(3):745-51. PubMed ID: 23477527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward one-pot lipase-catalyzed synthesis of poly(ε-caprolactone) particles in aqueous dispersion.
    Inprakhon P; Panlawan P; Pongtharankul T; Marie E; Wiemann LO; Durand A; Sieber V
    Colloids Surf B Biointerfaces; 2014 Jan; 113():254-60. PubMed ID: 24103504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin.
    Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M
    Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel amphiphilic ternary polysaccharide derivates chitosan-g-PCL-b-MPEG: synthesis, characterization, and aggregation in aqueous solution.
    Lu Y; Liu L; Guo S
    Biopolymers; 2007 Aug 5-15; 86(5-6):403-8. PubMed ID: 17440902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone) blocks via ring-opening polymerization.
    Dai S; Li Z
    Biomacromolecules; 2008 Jul; 9(7):1883-93. PubMed ID: 18540675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and temperature.
    Kumar A; Gross RA
    Biomacromolecules; 2000; 1(1):133-8. PubMed ID: 11709835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell debris self-immobilized thermophilic lipase: a biocatalyst for synthesizing aliphatic polyesters.
    Sun Y; Yang Y; Wang C; Liu J; Shi W; Zhu X; Lu L; Li Q
    Appl Biochem Biotechnol; 2013 May; 170(2):399-405. PubMed ID: 23536248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipase-catalyzed transformation of poly(epsilon-caprolactone) into cyclic dicaprolactone.
    Ebata H; Toshima K; Matsumura S
    Biomacromolecules; 2000; 1(4):511-4. PubMed ID: 11710174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-component system dimethyl sulfoxide/LiCl as a solvent and catalyst for homogeneous ring-opening grafted polymerization of ε-caprolactone onto xylan.
    Zhang XQ; Chen MJ; Liu CF; Sun RC
    J Agric Food Chem; 2014 Jan; 62(3):682-90. PubMed ID: 24387806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.