BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 12911038)

  • 1. Neutral evolution of ten types of mariner transposons in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae.
    Witherspoon DJ; Robertson HM
    J Mol Evol; 2003 Jun; 56(6):751-69. PubMed ID: 12911038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Caenorhabditis briggsae genome contains active CbmaT1 and Tcb1 transposons.
    Brownlie JC; Johnson NM; Whyard S
    Mol Genet Genomics; 2005 Mar; 273(1):92-101. PubMed ID: 15702348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evolution of the second ancient human mariner transposon, Hsmar2, illustrates patterns of neutral evolution in the human genome lineage.
    Robertson HM; Martos R
    Gene; 1997 Dec; 205(1-2):219-28. PubMed ID: 9461396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics.
    Stein LD; Bao Z; Blasiar D; Blumenthal T; Brent MR; Chen N; Chinwalla A; Clarke L; Clee C; Coghlan A; Coulson A; D'Eustachio P; Fitch DH; Fulton LA; Fulton RE; Griffiths-Jones S; Harris TW; Hillier LW; Kamath R; Kuwabara PE; Mardis ER; Marra MA; Miner TL; Minx P; Mullikin JC; Plumb RW; Rogers J; Schein JE; Sohrmann M; Spieth J; Stajich JE; Wei C; Willey D; Wilson RK; Durbin R; Waterston RH
    PLoS Biol; 2003 Nov; 1(2):E45. PubMed ID: 14624247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of dnmt-2 and mbd-2-like genes in the free-living nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae.
    Gutierrez A; Sommer RJ
    Nucleic Acids Res; 2004; 32(21):6388-96. PubMed ID: 15576683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional constraint and divergence in the G protein family in Caenorhabditis elegans and Caenorhabditis briggsae.
    Jovelin R; Phillips PC
    Mol Genet Genomics; 2005 Jun; 273(4):299-310. PubMed ID: 15856303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive evolution in the SRZ chemoreceptor families of Caenorhabditis elegans and Caenorhabditis briggsae.
    Thomas JH; Kelley JL; Robertson HM; Ly K; Swanson WJ
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4476-81. PubMed ID: 15761060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of putative nonautonomous transposable elements associated with several transposon families in Caenorhabditis elegans.
    Oosumi T; Garlick B; Belknap WR
    J Mol Evol; 1996 Jul; 43(1):11-8. PubMed ID: 8660424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selfish Mitochondrial DNA Proliferates and Diversifies in Small, but not Large, Experimental Populations of Caenorhabditis briggsae.
    Phillips WS; Coleman-Hulbert AL; Weiss ES; Howe DK; Ping S; Wernick RI; Estes S; Denver DR
    Genome Biol Evol; 2015 Jun; 7(7):2023-37. PubMed ID: 26108490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer.
    Lampe DJ; Witherspoon DJ; Soto-Adames FN; Robertson HM
    Mol Biol Evol; 2003 Apr; 20(4):554-62. PubMed ID: 12654937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amino acid decarboxylase genes in Caenorhabditis.
    Hare EE; Loer CM
    BMC Evol Biol; 2004 Aug; 4():24. PubMed ID: 15287963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection at linked sites in the partial selfer Caenorhabditis elegans.
    Cutter AD; Payseur BA
    Mol Biol Evol; 2003 May; 20(5):665-73. PubMed ID: 12679551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern of selective constraint in C. elegans and C. briggsae genomes.
    Shabalina SA; Kondrashov AS
    Genet Res; 1999 Aug; 74(1):23-30. PubMed ID: 10505405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative genomic analysis of the small heat shock proteins in Caenorhabditis elegans and briggsae.
    Aevermann BD; Waters ER
    Genetica; 2008 Jul; 133(3):307-19. PubMed ID: 17940840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification.
    Hoogewijs D; De Henau S; Dewilde S; Moens L; Couvreur M; Borgonie G; Vinogradov SN; Roy SW; Vanfleteren JR
    BMC Evol Biol; 2008 Oct; 8():279. PubMed ID: 18844991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionarily conserved regions in Caenorhabditis transposable elements deduced by sequence comparison.
    Prasad SS; Harris LJ; Baillie DL; Rose AM
    Genome; 1991 Feb; 34(1):6-12. PubMed ID: 1851119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourfold faster rate of genome rearrangement in nematodes than in Drosophila.
    Coghlan A; Wolfe KH
    Genome Res; 2002 Jun; 12(6):857-67. PubMed ID: 12045140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mariner-like transposable element in the insect parasite nematode Heterorhabditis bacteriophora.
    Grenier E; Abadon M; Brunet F; Capy P; Abad P
    J Mol Evol; 1999 Mar; 48(3):328-36. PubMed ID: 10093222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mariner transposons are sailing in the genome of the blood-sucking bug Rhodnius prolixus.
    Filée J; Rouault JD; Harry M; Hua-Van A
    BMC Genomics; 2015 Dec; 16():1061. PubMed ID: 26666222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproductive Mode and the Evolution of Genome Size and Structure in Caenorhabditis Nematodes.
    Fierst JL; Willis JH; Thomas CG; Wang W; Reynolds RM; Ahearne TE; Cutter AD; Phillips PC
    PLoS Genet; 2015 Jun; 11(6):e1005323. PubMed ID: 26114425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.