These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
537 related articles for article (PubMed ID: 12911301)
21. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731 [TBL] [Abstract][Full Text] [Related]
22. tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble. Schultz DW; Yarus M J Mol Biol; 1994 Feb; 235(5):1381-94. PubMed ID: 8107080 [TBL] [Abstract][Full Text] [Related]
23. Rational design of an orthogonal tryptophanyl nonsense suppressor tRNA. Hughes RA; Ellington AD Nucleic Acids Res; 2010 Oct; 38(19):6813-30. PubMed ID: 20571084 [TBL] [Abstract][Full Text] [Related]
24. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition. Fukunaga R; Yokoyama S Nat Struct Mol Biol; 2005 Oct; 12(10):915-22. PubMed ID: 16155584 [TBL] [Abstract][Full Text] [Related]
25. Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Köhrer C; Sullivan EL; RajBhandary UL Nucleic Acids Res; 2004; 32(21):6200-11. PubMed ID: 15576346 [TBL] [Abstract][Full Text] [Related]
26. An enhanced system for unnatural amino acid mutagenesis in E. coli. Young TS; Ahmad I; Yin JA; Schultz PG J Mol Biol; 2010 Jan; 395(2):361-74. PubMed ID: 19852970 [TBL] [Abstract][Full Text] [Related]
27. An archaebacteria-derived glutamyl-tRNA synthetase and tRNA pair for unnatural amino acid mutagenesis of proteins in Escherichia coli. Santoro SW; Anderson JC; Lakshman V; Schultz PG Nucleic Acids Res; 2003 Dec; 31(23):6700-9. PubMed ID: 14627803 [TBL] [Abstract][Full Text] [Related]
28. A tRNA identity switch mediated by the binding interaction between a tRNA anticodon and the accessory domain of a class II aminoacyl-tRNA synthetase. Yan W; Augustine J; Francklyn C Biochemistry; 1996 May; 35(21):6559-68. PubMed ID: 8639604 [TBL] [Abstract][Full Text] [Related]
29. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. Normanly J; Kleina LG; Masson JM; Abelson J; Miller JH J Mol Biol; 1990 Jun; 213(4):719-26. PubMed ID: 2141650 [TBL] [Abstract][Full Text] [Related]
30. Switching tRNA(Gln) identity from glutamine to tryptophan. Rogers MJ; Adachi T; Inokuchi H; Söll D Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3463-7. PubMed ID: 1565639 [TBL] [Abstract][Full Text] [Related]
31. Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine. Sun R; Zheng H; Fang Z; Yao W Biochem Biophys Res Commun; 2010 Jan; 391(1):709-15. PubMed ID: 19944076 [TBL] [Abstract][Full Text] [Related]
32. A promiscuous aminoacyl-tRNA synthetase that incorporates cysteine, methionine, and alanine homologs into proteins. Brustad E; Bushey ML; Brock A; Chittuluru J; Schultz PG Bioorg Med Chem Lett; 2008 Nov; 18(22):6004-6. PubMed ID: 18845434 [TBL] [Abstract][Full Text] [Related]
33. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids. Pott M; Schmidt MJ; Summerer D ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570 [TBL] [Abstract][Full Text] [Related]
34. The 3' codon context effect on UAG suppressor tRNA is different in Escherichia coli and human cells. Phillips-Jones MK; Watson FJ; Martin R J Mol Biol; 1993 Sep; 233(1):1-6. PubMed ID: 8377179 [TBL] [Abstract][Full Text] [Related]
35. Interdomain communication modulates the tRNA-dependent pre-transfer editing of leucyl-tRNA synthetase. Tan M; Zhu B; Liu RJ; Chen X; Zhou XL; Wang ED Biochem J; 2013 Jan; 449(1):123-31. PubMed ID: 23035846 [TBL] [Abstract][Full Text] [Related]
36. Recognition of tRNALeu by Aquifex aeolicus leucyl-tRNA synthetase during the aminoacylation and editing steps. Yao P; Zhu B; Jaeger S; Eriani G; Wang ED Nucleic Acids Res; 2008 May; 36(8):2728-38. PubMed ID: 18367476 [TBL] [Abstract][Full Text] [Related]
37. [Determination of interacting segments of tRNA(Leu) from cow mammary glands with homologous aminoacyl-tRNA-synthetase by a chemical modification method]. Petrushenko ZM; Tukalo MA; Gudzera OI; Rozhko OT; Matsuka GKh Bioorg Khim; 1990 Dec; 16(12):1647-52. PubMed ID: 2090115 [TBL] [Abstract][Full Text] [Related]
38. Only one nucleotide insertion to the long variable arm confers an efficient serine acceptor activity upon Saccharomyces cerevisiae tRNA(Leu) in vitro. Himeno H; Yoshida S; Soma A; Nishikawa K J Mol Biol; 1997 May; 268(4):704-11. PubMed ID: 9175855 [TBL] [Abstract][Full Text] [Related]
39. Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of "shifty" four-base codons with a library approach in Escherichia coli. Magliery TJ; Anderson JC; Schultz PG J Mol Biol; 2001 Mar; 307(3):755-69. PubMed ID: 11273699 [TBL] [Abstract][Full Text] [Related]
40. On the mechanism of leftward frameshifting at several hungry codons. Barak Z; Lindsley D; Gallant J J Mol Biol; 1996 Mar; 256(4):676-84. PubMed ID: 8642590 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]