These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 12911311)
1. Rho-specific Bacillus cereus ADP-ribosyltransferase C3cer cloning and characterization. Wilde C; Vogelsgesang M; Aktories K Biochemistry; 2003 Aug; 42(32):9694-702. PubMed ID: 12911311 [TBL] [Abstract][Full Text] [Related]
2. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme. Vogelsgesang M; Aktories K Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. Han S; Arvai AS; Clancy SB; Tainer JA J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250 [TBL] [Abstract][Full Text] [Related]
4. Structure-function analysis of the Rho-ADP-ribosylating exoenzyme C3stau2 from Staphylococcus aureus. Wilde C; Just I; Aktories K Biochemistry; 2002 Feb; 41(5):1539-44. PubMed ID: 11814347 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of the Clostridium limosum C3 exoenzyme. Vogelsgesang M; Stieglitz B; Herrmann C; Pautsch A; Aktories K FEBS Lett; 2008 Apr; 582(7):1032-6. PubMed ID: 18325337 [TBL] [Abstract][Full Text] [Related]
7. Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase. Holbourn KP; Sutton JM; Evans HR; Shone CC; Acharya KR Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5357-62. PubMed ID: 15809419 [TBL] [Abstract][Full Text] [Related]
8. The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin. Barth H; Hofmann F; Olenik C; Just I; Aktories K Infect Immun; 1998 Apr; 66(4):1364-9. PubMed ID: 9529054 [TBL] [Abstract][Full Text] [Related]
9. ADP-ribosylation of the rho/rac gene products by botulinum ADP-ribosyltransferase: identity of the enzyme and effects on protein and cell functions. Narumiya S; Morii N; Sekine A; Kozaki S J Physiol (Paris); 1990; 84(4):267-72. PubMed ID: 2127805 [TBL] [Abstract][Full Text] [Related]
10. Rho-ADP-ribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NAD-binding site. Just I; Selzer J; Jung M; van Damme J; Vandekerckhove J; Aktories K Biochemistry; 1995 Jan; 34(1):334-40. PubMed ID: 7819216 [TBL] [Abstract][Full Text] [Related]
11. Distinct biological activities of C3 and ADP-ribosyltransferase-deficient C3-E174Q. Rohrbeck A; Kolbe T; Hagemann S; Genth H; Just I FEBS J; 2012 Aug; 279(15):2657-71. PubMed ID: 22621765 [TBL] [Abstract][Full Text] [Related]
12. Active site mutation of the C3-like ADP-ribosyltransferase from Clostridium limosum--analysis of glutamic acid 174. Böhmer J; Jung M; Sehr P; Fritz G; Popoff M; Just I; Aktories K Biochemistry; 1996 Jan; 35(1):282-9. PubMed ID: 8555186 [TBL] [Abstract][Full Text] [Related]
13. Recognition of RhoA by Clostridium botulinum C3 exoenzyme. Wilde C; Genth H; Aktories K; Just I J Biol Chem; 2000 Jun; 275(22):16478-83. PubMed ID: 10748216 [TBL] [Abstract][Full Text] [Related]
14. Characterization of C3larvinA, a novel RhoA-targeting ADP-ribosyltransferase toxin produced by the honey bee pathogen, Paenibacillus larvae. Turner M; Tremblay O; Heney KA; Lugo MR; Ebeling J; Genersch E; Merrill AR Biosci Rep; 2020 Jan; 40(1):. PubMed ID: 31844879 [TBL] [Abstract][Full Text] [Related]
15. Role of guanine nucleotide-binding proteins in Clostridium botulinum pathology: purification of substrates for Clostridium botulinum C3 ADP-ribosyltransferase with different requirements for GTP and phospholipids. Williamson KC; Smith LA; Moss J; Vaughan M Trans Assoc Am Physicians; 1990; 103():281-8. PubMed ID: 2132538 [No Abstract] [Full Text] [Related]
16. Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Gülke I; Pfeifer G; Liese J; Fritz M; Hofmann F; Aktories K; Barth H Infect Immun; 2001 Oct; 69(10):6004-11. PubMed ID: 11553537 [TBL] [Abstract][Full Text] [Related]
17. Conformational plasticity is crucial for C3-RhoA complex formation by ARTT-loop. Tsuge H; Yoshida T; Tsurumura T Pathog Dis; 2015 Dec; 73(9):ftv094. PubMed ID: 26474844 [TBL] [Abstract][Full Text] [Related]
18. Studies on the active-site structure of C3-like exoenzymes: involvement of glutamic acid in catalysis of ADP-ribosylation. Aktories K; Jung M; Böhmer J; Fritz G; Vandekerckhove J; Just I Biochimie; 1995; 77(5):326-32. PubMed ID: 8527485 [TBL] [Abstract][Full Text] [Related]
19. Channel formation by the binding component of Clostridium botulinum C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation in vivo. Blöcker D; Bachmeyer C; Benz R; Aktories K; Barth H Biochemistry; 2003 May; 42(18):5368-77. PubMed ID: 12731878 [TBL] [Abstract][Full Text] [Related]
20. From enzyme to zymogen: engineering Vip2, an ADP-ribosyltransferase from Bacillus cereus, for conditional toxicity. Jucovic M; Walters FS; Warren GW; Palekar NV; Chen JS Protein Eng Des Sel; 2008 Oct; 21(10):631-8. PubMed ID: 18723852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]