BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 12911311)

  • 1. Rho-specific Bacillus cereus ADP-ribosyltransferase C3cer cloning and characterization.
    Wilde C; Vogelsgesang M; Aktories K
    Biochemistry; 2003 Aug; 42(32):9694-702. PubMed ID: 12911311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme.
    Vogelsgesang M; Aktories K
    Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function analysis of the Rho-ADP-ribosylating exoenzyme C3stau2 from Staphylococcus aureus.
    Wilde C; Just I; Aktories K
    Biochemistry; 2002 Feb; 41(5):1539-44. PubMed ID: 11814347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rho-modifying C3-like ADP-ribosyltransferases.
    Aktories K; Wilde C; Vogelsgesang M
    Rev Physiol Biochem Pharmacol; 2004; 152():1-22. PubMed ID: 15372308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the Clostridium limosum C3 exoenzyme.
    Vogelsgesang M; Stieglitz B; Herrmann C; Pautsch A; Aktories K
    FEBS Lett; 2008 Apr; 582(7):1032-6. PubMed ID: 18325337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase.
    Holbourn KP; Sutton JM; Evans HR; Shone CC; Acharya KR
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5357-62. PubMed ID: 15809419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin.
    Barth H; Hofmann F; Olenik C; Just I; Aktories K
    Infect Immun; 1998 Apr; 66(4):1364-9. PubMed ID: 9529054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ADP-ribosylation of the rho/rac gene products by botulinum ADP-ribosyltransferase: identity of the enzyme and effects on protein and cell functions.
    Narumiya S; Morii N; Sekine A; Kozaki S
    J Physiol (Paris); 1990; 84(4):267-72. PubMed ID: 2127805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rho-ADP-ribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NAD-binding site.
    Just I; Selzer J; Jung M; van Damme J; Vandekerckhove J; Aktories K
    Biochemistry; 1995 Jan; 34(1):334-40. PubMed ID: 7819216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct biological activities of C3 and ADP-ribosyltransferase-deficient C3-E174Q.
    Rohrbeck A; Kolbe T; Hagemann S; Genth H; Just I
    FEBS J; 2012 Aug; 279(15):2657-71. PubMed ID: 22621765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active site mutation of the C3-like ADP-ribosyltransferase from Clostridium limosum--analysis of glutamic acid 174.
    Böhmer J; Jung M; Sehr P; Fritz G; Popoff M; Just I; Aktories K
    Biochemistry; 1996 Jan; 35(1):282-9. PubMed ID: 8555186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of RhoA by Clostridium botulinum C3 exoenzyme.
    Wilde C; Genth H; Aktories K; Just I
    J Biol Chem; 2000 Jun; 275(22):16478-83. PubMed ID: 10748216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of C3larvinA, a novel RhoA-targeting ADP-ribosyltransferase toxin produced by the honey bee pathogen, Paenibacillus larvae.
    Turner M; Tremblay O; Heney KA; Lugo MR; Ebeling J; Genersch E; Merrill AR
    Biosci Rep; 2020 Jan; 40(1):. PubMed ID: 31844879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of guanine nucleotide-binding proteins in Clostridium botulinum pathology: purification of substrates for Clostridium botulinum C3 ADP-ribosyltransferase with different requirements for GTP and phospholipids.
    Williamson KC; Smith LA; Moss J; Vaughan M
    Trans Assoc Am Physicians; 1990; 103():281-8. PubMed ID: 2132538
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile.
    Gülke I; Pfeifer G; Liese J; Fritz M; Hofmann F; Aktories K; Barth H
    Infect Immun; 2001 Oct; 69(10):6004-11. PubMed ID: 11553537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational plasticity is crucial for C3-RhoA complex formation by ARTT-loop.
    Tsuge H; Yoshida T; Tsurumura T
    Pathog Dis; 2015 Dec; 73(9):ftv094. PubMed ID: 26474844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the active-site structure of C3-like exoenzymes: involvement of glutamic acid in catalysis of ADP-ribosylation.
    Aktories K; Jung M; Böhmer J; Fritz G; Vandekerckhove J; Just I
    Biochimie; 1995; 77(5):326-32. PubMed ID: 8527485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Channel formation by the binding component of Clostridium botulinum C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation in vivo.
    Blöcker D; Bachmeyer C; Benz R; Aktories K; Barth H
    Biochemistry; 2003 May; 42(18):5368-77. PubMed ID: 12731878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From enzyme to zymogen: engineering Vip2, an ADP-ribosyltransferase from Bacillus cereus, for conditional toxicity.
    Jucovic M; Walters FS; Warren GW; Palekar NV; Chen JS
    Protein Eng Des Sel; 2008 Oct; 21(10):631-8. PubMed ID: 18723852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.