BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12911314)

  • 1. Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation.
    Schneider TL; Shen B; Walsh CT
    Biochemistry; 2003 Aug; 42(32):9722-30. PubMed ID: 12911314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BlmIII and BlmIV nonribosomal peptide synthetase-catalyzed biosynthesis of the bleomycin bithiazole moiety involving both in cis and in trans aminoacylation.
    Du L; Chen M; Zhang Y; Shen B
    Biochemistry; 2003 Aug; 42(32):9731-40. PubMed ID: 12911315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Portability of oxidase domains in nonribosomal peptide synthetase modules.
    Schneider TL; Walsh CT
    Biochemistry; 2004 Dec; 43(50):15946-55. PubMed ID: 15595851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excision of the epothilone synthetase B cyclization domain and demonstration of in trans condensation/cyclodehydration activity.
    Kelly WL; Hillson NJ; Walsh CT
    Biochemistry; 2005 Oct; 44(40):13385-93. PubMed ID: 16201763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous production of epothilone C and D in Escherichia coli.
    Mutka SC; Carney JR; Liu Y; Kennedy J
    Biochemistry; 2006 Jan; 45(4):1321-30. PubMed ID: 16430229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An oxidation domain in the BlmIII non-ribosomal peptide synthetase probably catalyzing thiazole formation in the biosynthesis of the anti-tumor drug bleomycin in Streptomyces verticillus ATCC15003.
    Du L; Chen M; Sánchez C; Shen B
    FEMS Microbiol Lett; 2000 Aug; 189(2):171-5. PubMed ID: 10930733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid nonribosomal peptide-polyketide interfaces in epothilone biosynthesis: minimal requirements at N and C termini of EpoB for elongation.
    Liu F; Garneau S; Walsh CT
    Chem Biol; 2004 Nov; 11(11):1533-42. PubMed ID: 15556004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epothilone biosynthesis: assembly of the methylthiazolylcarboxy starter unit on the EpoB subunit.
    Chen H; O'Connor S; Cane DE; Walsh CT
    Chem Biol; 2001 Sep; 8(9):899-912. PubMed ID: 11564558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometric interrogation of thioester-bound intermediates in the initial stages of epothilone biosynthesis.
    Hicks LM; O'Connor SE; Mazur MT; Walsh CT; Kelleher NL
    Chem Biol; 2004 Mar; 11(3):327-35. PubMed ID: 15123262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic assembly of epothilones: the EpoC subunit and reconstitution of the EpoA-ACP/B/C polyketide and nonribosomal peptide interfaces.
    O'Connor SE; Chen H; Walsh CT
    Biochemistry; 2002 Apr; 41(17):5685-94. PubMed ID: 11969430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of alternate substrates by the first three modules of the epothilone synthetase assembly line.
    Schneider TL; Walsh CT; O'Connor SE
    J Am Chem Soc; 2002 Sep; 124(38):11272-3. PubMed ID: 12236733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epothilone C macrolactonization and hydrolysis are catalyzed by the isolated thioesterase domain of epothilone polyketide synthase.
    Boddy CN; Schneider TL; Hotta K; Walsh CT; Khosla C
    J Am Chem Soc; 2003 Mar; 125(12):3428-9. PubMed ID: 12643694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular determinants for FMN-binding in Desulfovibrio gigas flavoredoxin.
    Broco M; Soares CM; Oliveira S; Mayhew SG; Rodrigues-Pousada C
    FEBS Lett; 2007 Sep; 581(23):4397-402. PubMed ID: 17719581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EpoK, a cytochrome P450 involved in biosynthesis of the anticancer agents epothilones A and B. Substrate-mediated rescue of a P450 enzyme.
    Ogura H; Nishida CR; Hoch UR; Perera R; Dawson JH; Ortiz de Montellano PR
    Biochemistry; 2004 Nov; 43(46):14712-21. PubMed ID: 15544342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epimerization of an L-cysteinyl to a D-cysteinyl residue during thiazoline ring formation in siderophore chain elongation by pyochelin synthetase from Pseudomonas aeruginosa.
    Patel HM; Tao J; Walsh CT
    Biochemistry; 2003 Sep; 42(35):10514-27. PubMed ID: 12950179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and biochemical characterization of flavoredoxin from the archaeon Methanosarcina acetivorans.
    Suharti S; Murakami KS; de Vries S; Ferry JG
    Biochemistry; 2008 Nov; 47(44):11528-35. PubMed ID: 18842001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbation of the ground-state electronic structure of FMN by the conserved cysteine in phototropin LOV2 domains.
    Alexandre MT; van Grondelle R; Hellingwerf KJ; Robert B; Kennis JT
    Phys Chem Chem Phys; 2008 Nov; 10(44):6693-702. PubMed ID: 18989482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of coenzyme F420H2 oxidase (FprA), a di-iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O.
    Seedorf H; Hagemeier CH; Shima S; Thauer RK; Warkentin E; Ermler U
    FEBS J; 2007 Mar; 274(6):1588-99. PubMed ID: 17480207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.