BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 12911318)

  • 1. Repair of DNA containing Fapy.dG and its beta-C-nucleoside analogue by formamidopyrimidine DNA glycosylase and MutY.
    Wiederholt CJ; Delaney MO; Pope MA; David SS; Greenberg MM
    Biochemistry; 2003 Aug; 42(32):9755-60. PubMed ID: 12911318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of DNA containing Fapy.dA or its C-nucleoside analogues with base excision repair enzymes. Implications for mutagenesis and enzyme inhibition.
    Wiederholt CJ; Delaney MO; Greenberg MM
    Biochemistry; 2002 Dec; 41(52):15838-44. PubMed ID: 12501213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the replication of the ring opened formamidopyrimidine, Fapy.dG in Escherichia coli.
    Patro JN; Wiederholt CJ; Jiang YL; Delaney JC; Essigmann JM; Greenberg MM
    Biochemistry; 2007 Sep; 46(35):10202-12. PubMed ID: 17691820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fapy.dG instructs Klenow exo(-) to misincorporate deoxyadenosine.
    Wiederholt CJ; Greenberg MM
    J Am Chem Soc; 2002 Jun; 124(25):7278-9. PubMed ID: 12071730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the configurations of formamidopyrimidine lesions Fapy.dA and Fapy.dG in DNA using endonuclease IV.
    Patro JN; Haraguchi K; Delaney MO; Greenberg MM
    Biochemistry; 2004 Oct; 43(42):13397-403. PubMed ID: 15491146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excision of formamidopyrimidine lesions by endonucleases III and VIII is not a major DNA repair pathway in Escherichia coli.
    Wiederholt CJ; Patro JN; Jiang YL; Haraguchi K; Greenberg MM
    Nucleic Acids Res; 2005; 33(10):3331-8. PubMed ID: 15944451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient removal of formamidopyrimidines by 8-oxoguanine glycosylases.
    Krishnamurthy N; Haraguchi K; Greenberg MM; David SS
    Biochemistry; 2008 Jan; 47(3):1043-50. PubMed ID: 18154319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct repair activities of human 7,8-dihydro-8-oxoguanine DNA glycosylase and formamidopyrimidine DNA glycosylase for formamidopyrimidine and 7,8-dihydro-8-oxoguanine.
    Asagoshi K; Yamada T; Terato H; Ohyama Y; Monden Y; Arai T; Nishimura S; Aburatani H; Lindahl T; Ide H
    J Biol Chem; 2000 Feb; 275(7):4956-64. PubMed ID: 10671534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic effects of oxidative DNA damages: comparative mutagenesis of the imidazole ring-opened formamidopyrimidines (Fapy lesions) and 8-oxo-purines in simian kidney cells.
    Kalam MA; Haraguchi K; Chandani S; Loechler EL; Moriya M; Greenberg MM; Basu AK
    Nucleic Acids Res; 2006; 34(8):2305-15. PubMed ID: 16679449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA polymerase bypass in vitro and in E. coli of a C-nucleotide analogue of Fapy-dG.
    Weledji YN; Wiederholt CJ; Delaney MO; Greenberg MM
    Bioorg Med Chem; 2008 Apr; 16(7):4029-34. PubMed ID: 18242999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of oligodeoxynucleotides containing formamidopyrimidine lesions and nonhydrolyzable analogues.
    Haraguchi K; Delaney MO; Wiederholt CJ; Sambandam A; Hantosi Z; Greenberg MM
    J Am Chem Soc; 2002 Apr; 124(13):3263-9. PubMed ID: 11916409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the requirements for recognition and catalysis in Fpg and MutY with nonpolar adenine isosteres.
    Francis AW; Helquist SA; Kool ET; David SS
    J Am Chem Soc; 2003 Dec; 125(52):16235-42. PubMed ID: 14692765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on N4-(2-deoxy-D-pentofuranosyl)-4,6-diamino-5-formamidopyrimidine (Fapy.dA) and N6-(2-deoxy-D-pentofuranosyl)-6-diamino-5-formamido-4-hydroxypyrimidine (Fapy.dG).
    Greenberg MM; Hantosi Z; Wiederholt CJ; Rithner CD
    Biochemistry; 2001 Dec; 40(51):15856-61. PubMed ID: 11747463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MutY DNA glycosylase: base release and intermediate complex formation.
    Zharkov DO; Grollman AP
    Biochemistry; 1998 Sep; 37(36):12384-94. PubMed ID: 9730810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing of N
    Minko IG; Christov PP; Li L; Stone MP; McCullough AK; Lloyd RS
    DNA Repair (Amst); 2019 Jan; 73():49-54. PubMed ID: 30448017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role for lysine 142 in the excision of adenine from A:G mispairs by MutY DNA glycosylase of Escherichia coli.
    Zharkov DO; Gilboa R; Yagil I; Kycia JH; Gerchman SE; Shoham G; Grollman AP
    Biochemistry; 2000 Dec; 39(48):14768-78. PubMed ID: 11101292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of oligonucleotides and thermal stability of duplexes containing the beta-C-nucleoside analogue of Fapy*dG.
    Delaney MO; Greenberg MM
    Chem Res Toxicol; 2002 Nov; 15(11):1460-5. PubMed ID: 12437337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and structural characterization of Fapy•dG replication by Human DNA polymerase β.
    Gao S; Oden PN; Ryan BJ; Yang H; Freudenthal BD; Greenberg MM
    Nucleic Acids Res; 2024 May; 52(9):5392-5405. PubMed ID: 38634780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates.
    Porello SL; Leyes AE; David SS
    Biochemistry; 1998 Oct; 37(42):14756-64. PubMed ID: 9778350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity.
    Tchou J; Kasai H; Shibutani S; Chung MH; Laval J; Grollman AP; Nishimura S
    Proc Natl Acad Sci U S A; 1991 Jun; 88(11):4690-4. PubMed ID: 2052552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.