BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12911707)

  • 1. Stability of beta-carotene in spray dried preparation of Rhodotorula glutinis mutant 32.
    Bhosale P; Jogdand VV; Gadre RV
    J Appl Microbiol; 2003; 95(3):584-90. PubMed ID: 12911707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. beta-Carotene production in sugarcane molasses by a Rhodotorula glutinis mutant.
    Bhosale P; Gadre RV
    J Ind Microbiol Biotechnol; 2001 Jun; 26(6):327-32. PubMed ID: 11571614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of beta-carotene-enriched rice bran using solid-state fermentation of Rhodotorula glutinis.
    Roadjanakamolson M; Suntornsuk W
    J Microbiol Biotechnol; 2010 Mar; 20(3):525-31. PubMed ID: 20372023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of beta-carotene production by Rhodotorula glutinis using high hydrostatic pressure and response surface methodology.
    Wang SL; Sun JS; Han BZ; Wu XZ
    J Food Sci; 2007 Oct; 72(8):M325-9. PubMed ID: 17995613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of beta-carotene production by Rhodotorula glutinis DM28 in fermented radish brine.
    Malisorn C; Suntornsuk W
    Bioresour Technol; 2008 May; 99(7):2281-7. PubMed ID: 17587568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of beta-carotene by a mutant of Rhodotorula glutinis.
    Bhosale PB; Gadre RV
    Appl Microbiol Biotechnol; 2001 May; 55(4):423-7. PubMed ID: 11398921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of temperature and illumination conditions for enhanced beta-carotene production by mutant 32 of Rhodotorula glutinis.
    Bhosale P; Gadre RV
    Lett Appl Microbiol; 2002; 34(5):349-53. PubMed ID: 11967057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of carotenoid production from hyper-producing Rhodotorula glutinis mutant 32 by a factorial approach.
    Bhosale P; Gadre RV
    Lett Appl Microbiol; 2001 Jul; 33(1):12-6. PubMed ID: 11442807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of β-carotene content, cell physiology and morphology of the yellow yeast Rhodotorula glutinis mutant 400A15 using flow cytometry.
    Cutzu R; Clemente A; Reis A; Nobre B; Mannazzu I; Roseiro J; Lopes da Silva T
    J Ind Microbiol Biotechnol; 2013 Aug; 40(8):865-75. PubMed ID: 23660998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of whey ultrafiltrate as a substrate for production of carotenoids by the yeast Rhodotorula rubra.
    Frengova G; Simova E; Beshkova D
    Appl Biochem Biotechnol; 2004 Mar; 112(3):133-41. PubMed ID: 15007181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous β-carotene and cellulase production.
    Pi HW; Anandharaj M; Kao YY; Lin YJ; Chang JJ; Li WH
    Sci Rep; 2018 Jul; 8(1):10850. PubMed ID: 30022171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of high hydrostatic pressure on the growth and beta-carotene production of Rhodotorula glutinis.
    Wang SL; Chen DJ; Deng BW; Wu XZ
    Yeast; 2008 Apr; 25(4):251-7. PubMed ID: 18338316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup.
    Buzzini P
    J Appl Microbiol; 2001 May; 90(5):843-7. PubMed ID: 11348447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-carotene-rich carotenoid-protein preparation and exopolysaccharide production by Rhodotorula rubra GED8 grown with a yogurt starter culture.
    Frengova GI; Simova ED; Beshkova DM
    Z Naturforsch C J Biosci; 2006; 61(7-8):571-7. PubMed ID: 16989319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of several waste substrates for carotenoid-rich yeast biomass production.
    Marova I; Carnecka M; Halienova A; Certik M; Dvorakova T; Haronikova A
    J Environ Manage; 2012 Mar; 95 Suppl():S338-42. PubMed ID: 21741756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reutilization of residual glycerin for the produce β-carotene by Rhodotorula minuta.
    da Silva SRS; Stamford TCM; Albuquerque WWC; Vidal EE; Stamford TLM
    Biotechnol Lett; 2020 Mar; 42(3):437-443. PubMed ID: 31933056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of beta-carotene by a Rhodotorula glutinis mutant in sea water medium.
    Bhosale P; Gadre RV
    Bioresour Technol; 2001 Jan; 76(1):53-5. PubMed ID: 11315810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced high β-carotene yeast cell production by Rhodotorula paludigena CM33 and in vitro digestibility in aquatic animals.
    Thumkasem N; On-Mee T; Kongsinkaew C; Chittapun S; Pornpukdeewattana S; Ketudat-Cairns M; Thongprajukaew K; Antimanon S; Charoenrat T
    Sci Rep; 2024 Apr; 14(1):9188. PubMed ID: 38649733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source.
    Yen HW; Chang JT
    J Biosci Bioeng; 2015 May; 119(5):580-4. PubMed ID: 25454603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing microalgal hydrolysate from dairy wastewater-grown Chlorella sorokiniana SU-1 as sustainable feedstock for polyhydroxybutyrate and β-carotene production by engineered Rhodotorula glutinis #100-29.
    Kusmayadi A; Huang CY; Leong YK; Yen HW; Lee DJ; Chang JS
    Bioresour Technol; 2023 Sep; 384():129277. PubMed ID: 37290703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.