BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 12912909)

  • 1. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling.
    Echtay KS; Esteves TC; Pakay JL; Jekabsons MB; Lambert AJ; Portero-Otín M; Pamplona R; Vidal-Puig AJ; Wang S; Roebuck SJ; Brand MD
    EMBO J; 2003 Aug; 22(16):4103-10. PubMed ID: 12912909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart.
    Aguirre E; Cadenas S
    Biochim Biophys Acta; 2010 Oct; 1797(10):1716-26. PubMed ID: 20599679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energization-dependent endogenous activation of proton conductance in skeletal muscle mitochondria.
    Parker N; Affourtit C; Vidal-Puig A; Brand MD
    Biochem J; 2008 May; 412(1):131-9. PubMed ID: 18251717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide activates mitochondrial uncoupling proteins.
    Echtay KS; Roussel D; St-Pierre J; Jekabsons MB; Cadenas S; Stuart JA; Harper JA; Roebuck SJ; Morrison A; Pickering S; Clapham JC; Brand MD
    Nature; 2002 Jan; 415(6867):96-9. PubMed ID: 11780125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial proton conductance in skeletal muscle of a cold-exposed marsupial, Antechinus flavipes, is unlikely to be involved in adaptive nonshivering thermogenesis but displays increased sensitivity toward carbon-centered radicals.
    Jastroch M; Withers KW; Stoehr S; Klingenspor M
    Physiol Biochem Zool; 2009; 82(5):447-54. PubMed ID: 19614545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of the inhibitory effects of purine nucleotides and carboxyatractylate on the uncoupling protein-3 and adenine nucleotide translocase.
    Komelina NP; Amerkhanov ZG
    Acta Biochim Pol; 2010; 57(4):413-9. PubMed ID: 21152446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential.
    Parker N; Vidal-Puig A; Brand MD
    Biosci Rep; 2008 Apr; 28(2):83-8. PubMed ID: 18384278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxyatractyloside effects on brown-fat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty-acid-induced uncoupling respectively.
    Shabalina IG; Kramarova TV; Nedergaard J; Cannon B
    Biochem J; 2006 Nov; 399(3):405-14. PubMed ID: 16831128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation.
    Azzu V; Parker N; Brand MD
    Biochem J; 2008 Jul; 413(2):323-32. PubMed ID: 18426390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4-hydroxy-2-nonenal and uncoupling proteins: an approach for regulation of mitochondrial ROS production.
    Echtay KS; Brand MD
    Redox Rep; 2007; 12(1):26-9. PubMed ID: 17263904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute knockdown of uncoupling protein-2 increases uncoupling via the adenine nucleotide transporter and decreases oxidative stress in diabetic kidneys.
    Friederich-Persson M; Aslam S; Nordquist L; Welch WJ; Wilcox CS; Palm F
    PLoS One; 2012; 7(7):e39635. PubMed ID: 22768304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxynonenal and uncoupling proteins: a model for protection against oxidative damage.
    Echtay KS; Pakay JL; Esteves TC; Brand MD
    Biofactors; 2005; 24(1-4):119-30. PubMed ID: 16403971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel uncoupling proteins.
    Affourtit C; Crichton PG; Parker N; Brand MD
    Novartis Found Symp; 2007; 287():70-80; discussion 80-91. PubMed ID: 18074632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditions allowing different states of ATP- and GDP-induced permeability in mitochondria from different strains of Saccharomyces cerevisiae.
    Roucou X; Manon S; Guérin M
    Biochim Biophys Acta; 1997 Feb; 1324(1):120-32. PubMed ID: 9059505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria.
    Harper JA; Stuart JA; Jekabsons MB; Roussel D; Brindle KM; Dickinson K; Jones RB; Brand MD
    Biochem J; 2002 Jan; 361(Pt 1):49-56. PubMed ID: 11743882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress as regulatory factor for fatty-acid-induced uncoupling involving liver mitochondrial ADP/ATP and aspartate/glutamate antiporters of old rats.
    Samartsev VN; Kozhina OV
    Biochemistry (Mosc); 2008 Jul; 73(7):783-90. PubMed ID: 18707586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial uncoupling, ROS generation and cardioprotection.
    Cadenas S
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):940-950. PubMed ID: 29859845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoregulatory uncoupling in heart muscle mitochondria: involvement of the ATP/ADP antiporter and uncoupling protein.
    Simonyan RA; Skulachev VP
    FEBS Lett; 1998 Sep; 436(1):81-4. PubMed ID: 9771898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of mitochondrial inner membrane anion carriers in the uncoupling effect of fatty acids.
    Mokhova EN; Khailova LS
    Biochemistry (Mosc); 2005 Feb; 70(2):159-63. PubMed ID: 15807654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase in the adenine nucleotide translocase content of duckling subsarcolemmal mitochondria during cold acclimation.
    Roussel D; Chainier F; Rouanet J; Barré H
    FEBS Lett; 2000 Jul; 477(1-2):141-4. PubMed ID: 10899325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.