These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12913879)

  • 1. Brain ablation in the rat cerebral cortex using a tunable-free electron laser.
    Ovelmen-Levitt J; Straub KD; Hauger S; Szarmes E; Madey J; Pearlstein RD; Nashold BS
    Lasers Surg Med; 2003; 33(2):81-92. PubMed ID: 12913879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology.
    Youn JI; Sweet P; Peavy GM; Venugopalan V
    Lasers Surg Med; 2006 Mar; 38(3):218-28. PubMed ID: 16453331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL).
    Mackanos MA; Simanovskii D; Joos KM; Schwettman HA; Jansen ED
    Lasers Surg Med; 2007 Mar; 39(3):230-6. PubMed ID: 17304561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoablation of gelatin with the free-electron laser between 2.7 and 6.7 microns.
    Jean B; Bende T
    J Refract Corneal Surg; 1994; 10(4):433-8. PubMed ID: 7528615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm.
    Youn JI; Sweet P; Peavy GM
    Lasers Surg Med; 2007 Apr; 39(4):332-40. PubMed ID: 17457836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects.
    Mackanos MA; Kozub JA; Hachey DL; Joos KM; Ellis DL; Jansen ED
    Phys Med Biol; 2005 Apr; 50(8):1885-99. PubMed ID: 15815102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue ablation by a free-electron laser tuned to the amide II band.
    Edwards G; Logan R; Copeland M; Reinisch L; Davidson J; Johnson B; Maciunas R; Mendenhall M; Ossoff R; Tribble J
    Nature; 1994 Sep; 371(6496):416-9. PubMed ID: 8090220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free electron laser ablation of articular and fibro-cartilage at 2.79, 2.9, 6.1, and 6.45 microm: mass removal studies.
    Youn JI; Peavy GM; Venugopalan V
    Lasers Surg Med; 2005 Mar; 36(3):202-9. PubMed ID: 15704094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective laser ablation of bone based on the absorption characteristics of water and proteins.
    Spencer P; Payne JM; Cobb CM; Reinisch L; Peavy GM; Drummer DD; Suchman DL; Swafford JR
    J Periodontol; 1999 Jan; 70(1):68-74. PubMed ID: 10052773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics.
    Mackanos MA; Kozub JA; Jansen ED
    Phys Med Biol; 2005 Apr; 50(8):1871-83. PubMed ID: 15815101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength and average power density dependency of the surface modification of root dentin using an MIR-FEL.
    Heya M; Sano S; Takagi N; Fukami Y; Awazu K
    Lasers Surg Med; 2003; 32(5):349-58. PubMed ID: 12766957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 microm, 2.79 microm, and 0.355 microm laser pulses.
    Dela Rosa A; Sarma AV; Le CQ; Jones RS; Fried D
    Lasers Surg Med; 2004; 35(3):214-28. PubMed ID: 15389737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hollow-waveguide-based nanosecond, near-infrared pulsed laser ablation of tissue.
    Sato S; Shi YW; Matsuura Y; Miyagi M; Ashida H
    Lasers Surg Med; 2005 Aug; 37(2):149-54. PubMed ID: 16097010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of skin lesions produced by focused, tunable, mid-infrared chalcogenide laser radiation.
    Evers M; Ha L; Casper M; Welford D; Kositratna G; Birngruber R; Manstein D
    Lasers Surg Med; 2018 Sep; 50(9):961-972. PubMed ID: 29799127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental application of pulsed Ho:YAG laser-induced liquid jet as a novel rigid neuroendoscopic dissection device.
    Ohki T; Nakagawa A; Hirano T; Hashimoto T; Menezes V; Jokura H; Uenohara H; Sato Y; Saito T; Shirane R; Tominaga T; Takayama K
    Lasers Surg Med; 2004; 34(3):227-34. PubMed ID: 15022249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser.
    Fried D; Featherstone JD; Le CQ; Fan K
    Lasers Surg Med; 2006 Oct; 38(9):837-45. PubMed ID: 17044095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared laser desorption and ionization of polypeptides from a polyacrylamide gel.
    Baltz-Knorr M; Ermer DR; Schriver KE; Haglund RF
    J Mass Spectrom; 2002 Mar; 37(3):254-8. PubMed ID: 11921365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic ratio quantifies laser antisepsis: ablation of Porphyromonas gingivalis with dental lasers.
    Harris DM; Yessik M
    Lasers Surg Med; 2004; 35(3):206-13. PubMed ID: 15389740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting clinical efficacy of photoangiolytic and cutting/ablating lasers using the chick chorioallantoic membrane model: implications for endoscopic voice surgery.
    Burns JA; Kobler JB; Heaton JT; Anderson RR; Zeitels SM
    Laryngoscope; 2008 Jun; 118(6):1109-24. PubMed ID: 18354337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of histological findings of single session Er:YAG skin fractional resurfacing with various passes and energies and the possible clinical implications.
    Trelles MA; VĂ©lez M; Mordon S
    Lasers Surg Med; 2008 Mar; 40(3):171-7. PubMed ID: 18366083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.