BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2397 related articles for article (PubMed ID: 12914447)

  • 1. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical nature of intermolecular interactions within cAMP-dependent protein kinase active site: differential transition state stabilization in phosphoryl transfer reaction.
    Szarek P; Dyguda-Kazimierowicz E; Tachibana A; Sokalski WA
    J Phys Chem B; 2008 Sep; 112(37):11819-26. PubMed ID: 18720966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does the cAMP-dependent protein kinase catalyze the phosphorylation reaction: an ab initio QM/MM study.
    Cheng Y; Zhang Y; McCammon JA
    J Am Chem Soc; 2005 Feb; 127(5):1553-62. PubMed ID: 15686389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is there a catalytic base in the active site of cAMP-dependent protein kinase?
    Zhou J; Adams JA
    Biochemistry; 1997 Mar; 36(10):2977-84. PubMed ID: 9062128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the phosphoryl-transfer mechanism of cAMP-dependent protein kinase from quantum chemical calculations and molecular dynamics simulations.
    Díaz N; Field MJ
    J Am Chem Soc; 2004 Jan; 126(2):529-42. PubMed ID: 14719950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A QM/MM study of Kemptide phosphorylation catalyzed by protein kinase A. The role of Asp166 as a general acid/base catalyst.
    Pérez-Gallegos A; Garcia-Viloca M; González-Lafont À; Lluch JM
    Phys Chem Chem Phys; 2015 Feb; 17(5):3497-511. PubMed ID: 25535906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study.
    Ishida T; Kato S
    J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A QM/MM study of the phosphoryl transfer to the Kemptide substrate catalyzed by protein kinase A. The effect of the phosphorylation state of the protein on the mechanism.
    Montenegro M; Garcia-Viloca M; Lluch JM; González-Lafont A
    Phys Chem Chem Phys; 2011 Jan; 13(2):530-9. PubMed ID: 21052604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase.
    Florián J; Goodman MF; Warshel A
    J Am Chem Soc; 2003 Jul; 125(27):8163-77. PubMed ID: 12837086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for an internal entropy contribution to phosphoryl transfer: a study of domain closure, backbone flexibility, and the catalytic cycle of cAMP-dependent protein kinase.
    Li F; Gangal M; Juliano C; Gorfain E; Taylor SS; Johnson DA
    J Mol Biol; 2002 Jan; 315(3):459-69. PubMed ID: 11786025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dianionic phosphorane intermediate and transition states in an associative A(N)+D(N) mechanism for the ribonucleaseA hydrolysis reaction.
    Elsässer B; Valiev M; Weare JH
    J Am Chem Soc; 2009 Mar; 131(11):3869-71. PubMed ID: 19245210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational study of the phosphoryl transfer catalyzed by a cyclin-dependent kinase.
    De Vivo M; Cavalli A; Carloni P; Recanatini M
    Chemistry; 2007; 13(30):8437-44. PubMed ID: 17636466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of histidine-85 in the catalytic mechanism of thymidine phosphorylase as assessed by targeted molecular dynamics simulations and quantum mechanical calculations.
    Mendieta J; Martín-Santamaría S; Priego EM; Balzarini J; Camarasa MJ; Pérez-Pérez MJ; Gago F
    Biochemistry; 2004 Jan; 43(2):405-14. PubMed ID: 14717594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and structural studies on the catalytic role of the aspartic acid residue conserved in copper amine oxidase.
    Chiu YC; Okajima T; Murakawa T; Uchida M; Taki M; Hirota S; Kim M; Yamaguchi H; Kawano Y; Kamiya N; Kuroda S; Hayashi H; Yamamoto Y; Tanizawa K
    Biochemistry; 2006 Apr; 45(13):4105-20. PubMed ID: 16566584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic mechanism of glycosyltransferases: hybrid quantum mechanical/molecular mechanical study of the inverting N-acetylglucosaminyltransferase I.
    Kozmon S; Tvaroska I
    J Am Chem Soc; 2006 Dec; 128(51):16921-7. PubMed ID: 17177443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the role of the conserved aspartate in the hydrolysis of the phosphocysteine intermediate of the low molecular weight tyrosine phosphatase.
    Asthagiri D; Liu T; Noodleman L; Van Etten RL; Bashford D
    J Am Chem Soc; 2004 Oct; 126(39):12677-84. PubMed ID: 15453802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoryl transfer by a concerted reaction mechanism in UMP/CMP-kinase.
    Hutter MC; Helms V
    Protein Sci; 2000 Nov; 9(11):2225-31. PubMed ID: 11152133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 A resolution: dynamics of catalytic residues.
    Oakley AJ; Klvana M; Otyepka M; Nagata Y; Wilce MC; Damborský J
    Biochemistry; 2004 Feb; 43(4):870-8. PubMed ID: 14744129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic mechanism of the inverting N-acetylglucosaminyltransferase I: DFT quantum mechanical model of the reaction pathway and determination of the transition state structure.
    Tvaroska I; André I; Carver JP
    Glycobiology; 2003 Aug; 13(8):559-66. PubMed ID: 12672701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 120.