These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 12914658)
1. Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster. Locke DP; Archidiacono N; Misceo D; Cardone MF; Deschamps S; Roe B; Rocchi M; Eichler EE Genome Biol; 2003; 4(8):R50. PubMed ID: 12914658 [TBL] [Abstract][Full Text] [Related]
2. Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans. Kehrer-Sawatzki H; Sandig CA; Goidts V; Hameister H Cytogenet Genome Res; 2005; 108(1-3):91-7. PubMed ID: 15545720 [TBL] [Abstract][Full Text] [Related]
3. Molecular definition of pericentric inversion breakpoints occurring during the evolution of humans and chimpanzees. Nickerson E; Nelson DL Genomics; 1998 Jun; 50(3):368-72. PubMed ID: 9676431 [TBL] [Abstract][Full Text] [Related]
4. Nucleotide sequence comparison of a chromosome rearrangement on human chromosome 12 and the corresponding ape chromosomes. Shimada MK; Kim CG; Kitano T; Ferrell RE; Kohara Y; Saitou N Cytogenet Genome Res; 2005; 108(1-3):83-90. PubMed ID: 15545719 [TBL] [Abstract][Full Text] [Related]
5. Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16. Goidts V; Szamalek JM; de Jong PJ; Cooper DN; Chuzhanova N; Hameister H; Kehrer-Sawatzki H Genome Res; 2005 Sep; 15(9):1232-42. PubMed ID: 16140991 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the human lineage-specific pericentric inversion that distinguishes human chromosome 1 from the homologous chromosomes of the great apes. Szamalek JM; Goidts V; Cooper DN; Hameister H; Kehrer-Sawatzki H Hum Genet; 2006 Aug; 120(1):126-38. PubMed ID: 16775709 [TBL] [Abstract][Full Text] [Related]
7. Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes). Kehrer-Sawatzki H; Sandig C; Chuzhanova N; Goidts V; Szamalek JM; Tänzer S; Müller S; Platzer M; Cooper DN; Hameister H Hum Mutat; 2005 Jan; 25(1):45-55. PubMed ID: 15580561 [TBL] [Abstract][Full Text] [Related]
8. The chimpanzee-specific pericentric inversions that distinguish humans and chimpanzees have identical breakpoints in Pan troglodytes and Pan paniscus. Szamalek JM; Goidts V; Searle JB; Cooper DN; Hameister H; Kehrer-Sawatzki H Genomics; 2006 Jan; 87(1):39-45. PubMed ID: 16321504 [TBL] [Abstract][Full Text] [Related]
9. Molecular characterization of the pericentric inversion of chimpanzee chromosome 11 homologous to human chromosome 9. Kehrer-Sawatzki H; Szamalek JM; Tänzer S; Platzer M; Hameister H Genomics; 2005 May; 85(5):542-50. PubMed ID: 15820305 [TBL] [Abstract][Full Text] [Related]
10. Segmental duplication associated with the human-specific inversion of chromosome 18: a further example of the impact of segmental duplications on karyotype and genome evolution in primates. Goidts V; Szamalek JM; Hameister H; Kehrer-Sawatzki H Hum Genet; 2004 Jul; 115(2):116-22. PubMed ID: 15133654 [TBL] [Abstract][Full Text] [Related]
11. Human chromosome 15q11-q14 regions of rearrangements contain clusters of LCR15 duplicons. Pujana MA; Nadal M; Guitart M; Armengol L; Gratacòs M; Estivill X Eur J Hum Genet; 2002 Jan; 10(1):26-35. PubMed ID: 11896453 [TBL] [Abstract][Full Text] [Related]
12. Molecular characterisation of the pericentric inversion that distinguishes human chromosome 5 from the homologous chimpanzee chromosome. Szamalek JM; Goidts V; Chuzhanova N; Hameister H; Cooper DN; Kehrer-Sawatzki H Hum Genet; 2005 Jul; 117(2-3):168-76. PubMed ID: 15883840 [TBL] [Abstract][Full Text] [Related]
13. Genomic structure and paralogous regions of the inversion breakpoint occurring between human chromosome 3p12.3 and orangutan chromosome 2. Yue Y; Grossmann B; Tsend-Ayush E; Grützner F; Ferguson-Smith MA; Yang F; Haaf T Cytogenet Genome Res; 2005; 108(1-3):98-105. PubMed ID: 15545721 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary breakpoint analysis on Y chromosomes of higher primates provides insight into human Y evolution. Wimmer R; Kirsch S; Rappold GA; Schempp W Cytogenet Genome Res; 2005; 108(1-3):204-10. PubMed ID: 15545731 [TBL] [Abstract][Full Text] [Related]
15. Molecular evolution of the human chromosome 15 pericentromeric region. Locke DP; Jiang Z; Pertz LM; Misceo D; Archidiacono N; Eichler EE Cytogenet Genome Res; 2005; 108(1-3):73-82. PubMed ID: 15545718 [TBL] [Abstract][Full Text] [Related]
16. Identification of large-scale human-specific copy number differences by inter-species array comparative genomic hybridization. Goidts V; Armengol L; Schempp W; Conroy J; Nowak N; Müller S; Cooper DN; Estivill X; Enard W; Szamalek JM; Hameister H; Kehrer-Sawatzki H Hum Genet; 2006 Mar; 119(1-2):185-98. PubMed ID: 16395594 [TBL] [Abstract][Full Text] [Related]
17. Comparative sequence analysis of primate subtelomeres originating from a chromosome fission event. Rudd MK; Endicott RM; Friedman C; Walker M; Young JM; Osoegawa K; ; de Jong PJ; Green ED; Trask BJ Genome Res; 2009 Jan; 19(1):33-41. PubMed ID: 18952852 [TBL] [Abstract][Full Text] [Related]
19. Conservation of pericentromeric duplications of a 200-kb part of the human 21q22.1 region in primates. Orti R; Potier MC; Maunoury C; Prieur M; Créau N; Delabar JM Cytogenet Cell Genet; 1998; 83(3-4):262-5. PubMed ID: 10072600 [TBL] [Abstract][Full Text] [Related]
20. Unique genomic sequences in human chromosome 16p are conserved in the great apes. Tarzami ST; Kringstein AM; Conte RA; Verma RS Mol Gen Genet; 1997 Jan; 253(4):512-4. PubMed ID: 9037113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]