BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12914778)

  • 1. Molecular mechanism of apoptosis: prediction of three-dimensional structure of caspase-6 and its interactions by homology modeling.
    Sattar R; Ali SA; Abbasi A
    Biochem Biophys Res Commun; 2003 Aug; 308(3):497-504. PubMed ID: 12914778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the tertiary structure of a caspase-9/inhibitor complex.
    Chou KC; Tomasselli AG; Heinrikson RL
    FEBS Lett; 2000 Mar; 470(3):249-56. PubMed ID: 10745077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The atomic-resolution structure of human caspase-8, a key activator of apoptosis.
    Watt W; Koeplinger KA; Mildner AM; Heinrikson RL; Tomasselli AG; Watenpaugh KD
    Structure; 1999 Sep; 7(9):1135-43. PubMed ID: 10508785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homology modeling of nematode Caenorhabditis elegans CED3 protein-inhibitor complex.
    Azim MK; Grossmann JG; Zaidi ZH
    Biochem Biophys Res Commun; 2001 Feb; 281(1):115-21. PubMed ID: 11178968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The three-dimensional structure of human granzyme B compared to caspase-3, key mediators of cell death with cleavage specificity for aspartic acid in P1.
    Rotonda J; Garcia-Calvo M; Bull HG; Geissler WM; McKeever BM; Willoughby CA; Thornberry NA; Becker JW
    Chem Biol; 2001 Apr; 8(4):357-68. PubMed ID: 11325591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the tertiary structure and substrate binding site of caspase-8.
    Chou KC; Jones D; Heinrikson RL
    FEBS Lett; 1997 Dec; 419(1):49-54. PubMed ID: 9426218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling apoptosis by inhibition of caspases.
    Concha NO; Abdel-Meguid SS
    Curr Med Chem; 2002 Mar; 9(6):713-26. PubMed ID: 11945133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity.
    Wei Y; Fox T; Chambers SP; Sintchak J; Coll JT; Golec JM; Swenson L; Wilson KP; Charifson PS
    Chem Biol; 2000 Jun; 7(6):423-32. PubMed ID: 10873833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8.
    Stennicke HR; Renatus M; Meldal M; Salvesen GS
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):563-8. PubMed ID: 10947972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis.
    Blanchard H; Kodandapani L; Mittl PR; Marco SD; Krebs JF; Wu JC; Tomaselli KJ; Grütter MG
    Structure; 1999 Sep; 7(9):1125-33. PubMed ID: 10508784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caspase-8 specificity probed at subsite S(4): crystal structure of the caspase-8-Z-DEVD-cho complex.
    Blanchard H; Donepudi M; Tschopp M; Kodandapani L; Wu JC; Grütter MG
    J Mol Biol; 2000 Sep; 302(1):9-16. PubMed ID: 10964557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of co- and post-translational myristoylation of proteins during apoptosis: interplay of N-myristoyltransferases and caspases.
    Perinpanayagam MA; Beauchamp E; Martin DD; Sim JY; Yap MC; Berthiaume LG
    FASEB J; 2013 Feb; 27(2):811-21. PubMed ID: 23150525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of caspase-7 inhibition by XIAP.
    Chai J; Shiozaki E; Srinivasula SM; Wu Q; Datta P; Alnemri ES; Shi Y
    Cell; 2001 Mar; 104(5):769-80. PubMed ID: 11257230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional analysis of caspase active sites.
    Chéreau D; Kodandapani L; Tomaselli KJ; Spada AP; Wu JC
    Biochemistry; 2003 Apr; 42(14):4151-60. PubMed ID: 12680769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex.
    Xu G; Cirilli M; Huang Y; Rich RL; Myszka DG; Wu H
    Nature; 2001 Mar; 410(6827):494-7. PubMed ID: 11260720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the S4 and S1 prime subsite specificities in caspase-3 with aza-peptide epoxide inhibitors.
    Ganesan R; Jelakovic S; Campbell AJ; Li ZZ; Asgian JL; Powers JC; Grütter MG
    Biochemistry; 2006 Aug; 45(30):9059-67. PubMed ID: 16866351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis.
    Srinivasula SM; Hegde R; Saleh A; Datta P; Shiozaki E; Chai J; Lee RA; Robbins PD; Fernandes-Alnemri T; Shi Y; Alnemri ES
    Nature; 2001 Mar; 410(6824):112-6. PubMed ID: 11242052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational restrictions in the active site of unliganded human caspase-3.
    Ni CZ; Li C; Wu JC; Spada AP; Ely KR
    J Mol Recognit; 2003; 16(3):121-4. PubMed ID: 12833566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the caspase activator human granzyme B, a proteinase highly specific for an Asp-P1 residue.
    Estébanez-Perpiña E; Fuentes-Prior P; Belorgey D; Braun M; Kiefersauer R; Maskos K; Huber R; Rubin H; Bode W
    Biol Chem; 2000 Dec; 381(12):1203-14. PubMed ID: 11209755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering ML-IAP to produce an extraordinarily potent caspase 9 inhibitor: implications for Smac-dependent anti-apoptotic activity of ML-IAP.
    Vucic D; Franklin MC; Wallweber HJ; Das K; Eckelman BP; Shin H; Elliott LO; Kadkhodayan S; Deshayes K; Salvesen GS; Fairbrother WJ
    Biochem J; 2005 Jan; 385(Pt 1):11-20. PubMed ID: 15485396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.