These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 12914837)

  • 1. Implications of using approximate Bloch-McConnell equations in NMR analyses of chemically exchanging systems: application to the electron self-exchange of plastocyanin.
    Hansen DF; Led JJ
    J Magn Reson; 2003 Aug; 163(2):215-27. PubMed ID: 12914837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of short-lived transient protein-protein interactions by intermolecular nuclear paramagnetic relaxation: plastocyanin from Anabaena variabilis.
    Hansen DF; Hass MA; Christensen HM; Ulstrup J; Led JJ
    J Am Chem Soc; 2003 Jun; 125(23):6858-9. PubMed ID: 12783525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of micros-ms dynamics of proteins using a combined analysis of 15N NMR relaxation and chemical shift: conformational exchange in plastocyanin induced by histidine protonations.
    Hass MA; Thuesen MH; Christensen HE; Led JJ
    J Am Chem Soc; 2004 Jan; 126(3):753-65. PubMed ID: 14733549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the electronic structure of the blue copper site in plastocyanin by NMR relaxation.
    Hansen DF; Led JJ
    J Am Chem Soc; 2004 Feb; 126(4):1247-52. PubMed ID: 14746497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general method for determining the electron self-exchange rates of blue copper proteins by longitudinal NMR relaxation.
    Jensen MR; Hansen DF; Led JJ
    J Am Chem Soc; 2002 Apr; 124(15):4093-6. PubMed ID: 11942848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of conformational exchange of a histidine side chain: protonation, rotamerization, and tautomerization of His61 in plastocyanin from Anabaena variabilis.
    Hass MA; Hansen DF; Christensen HE; Led JJ; Kay LE
    J Am Chem Soc; 2008 Jul; 130(26):8460-70. PubMed ID: 18540585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the longitudinal NMR relaxation rates of fast relaxing nuclei using a signal eliminating relaxation filter.
    Hansen DF; Led JJ
    J Magn Reson; 2001 Aug; 151(2):339-46. PubMed ID: 11531357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the use of pseudocontact shifts in the structure determination of metalloproteins.
    Jensen MR; Hansen DF; Ayna U; Dagil R; Hass MA; Christensen HE; Led JJ
    Magn Reson Chem; 2006 Mar; 44(3):294-301. PubMed ID: 16477687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the electron self-exchange rates of blue copper proteins by super-WEFT NMR spectroscopy.
    Ma L; Philipp E; Led JJ
    J Biomol NMR; 2001 Mar; 19(3):199-208. PubMed ID: 11330808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Backbone dynamics of reduced plastocyanin from the cyanobacterium Anabaena variabilis: regions involved in electron transfer have enhanced mobility.
    Ma L; Hass MA; Vierick N; Kristensen SM; Ulstrup J; Led JJ
    Biochemistry; 2003 Jan; 42(2):320-30. PubMed ID: 12525159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approximate solutions of the Bloch-McConnell equations for two-site chemical exchange.
    Abergel D; Palmer AG
    Chemphyschem; 2004 Jun; 5(6):787-93. PubMed ID: 15253305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of NMR pulse sequences during equilibrium and non-equilibrium chemical exchange.
    Helgstrand M; Härd T; Allard P
    J Biomol NMR; 2000 Sep; 18(1):49-63. PubMed ID: 11061228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exchange-dependent relaxation in the rotating frame for slow and intermediate exchange -- modeling off-resonant spin-lock and chemical exchange saturation transfer.
    Zaiss M; Bachert P
    NMR Biomed; 2013 May; 26(5):507-18. PubMed ID: 23281186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of R(1rho) rotating-frame and R2 free-precession relaxation in the presence of n-site chemical exchange.
    Trott O; Palmer AG
    J Magn Reson; 2004 Sep; 170(1):104-12. PubMed ID: 15324763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of two simplified 15N-NMR methods for determining micros-ms dynamics of proteins.
    Hass MA; Led JJ
    Magn Reson Chem; 2006 Aug; 44(8):761-9. PubMed ID: 16705625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histidine side-chain dynamics and protonation monitored by 13C CPMG NMR relaxation dispersion.
    Hass MA; Yilmaz A; Christensen HE; Led JJ
    J Biomol NMR; 2009 Aug; 44(4):225-33. PubMed ID: 19533375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinvestigation of the method used to map the electronic structure of blue copper proteins by NMR relaxation.
    Flemming Hansen D; Gorelsky SI; Sarangi R; Hodgson KO; Hedman B; Christensen HE; Solomon EI; Led JJ
    J Biol Inorg Chem; 2006 Apr; 11(3):277-85. PubMed ID: 16432723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex of plastocyanin and cytochrome c characterized by NMR chemical shift analysis.
    Ubbink M; Bendall DS
    Biochemistry; 1997 May; 36(21):6326-35. PubMed ID: 9174347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active-site structure and electron-transfer reactivity of plastocyanins.
    Sato K; Kohzuma T; Dennison C
    J Am Chem Soc; 2003 Feb; 125(8):2101-12. PubMed ID: 12590538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing micro-to-millisecond chemical exchange in nucleic acids using off-resonance R
    Rangadurai A; Szymaski ES; Kimsey IJ; Shi H; Al-Hashimi HM
    Prog Nucl Magn Reson Spectrosc; 2019; 112-113():55-102. PubMed ID: 31481159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.