These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12914955)

  • 1. Involvement of LMA1 and GATE-16 family members in intracellular membrane dynamics.
    Elazar Z; Scherz-Shouval R; Shorer H
    Biochim Biophys Acta; 2003 Aug; 1641(2-3):145-56. PubMed ID: 12914955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation.
    Müller O; Bayer MJ; Peters C; Andersen JS; Mann M; Mayer A
    EMBO J; 2002 Feb; 21(3):259-69. PubMed ID: 11823419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sec17 (α-SNAP) and Sec18 (NSF) restrict membrane fusion to R-SNAREs, Q-SNAREs, and SM proteins from identical compartments.
    Jun Y; Wickner W
    Proc Natl Acad Sci U S A; 2019 Nov; 116(47):23573-23581. PubMed ID: 31685636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homotypic vacuolar fusion mediated by t- and v-SNAREs.
    Nichols BJ; Ungermann C; Pelham HR; Wickner WT; Haas A
    Nature; 1997 May; 387(6629):199-202. PubMed ID: 9144293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SNAREs and membrane fusion in the Golgi apparatus.
    Nichols BJ; Pelham HR
    Biochim Biophys Acta; 1998 Aug; 1404(1-2):9-31. PubMed ID: 9714710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential SNARE disassembly and GATE-16-GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion.
    Muller JM; Shorter J; Newman R; Deinhardt K; Sagiv Y; Elazar Z; Warren G; Shima DT
    J Cell Biol; 2002 Jun; 157(7):1161-73. PubMed ID: 12070132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein.
    Price A; Seals D; Wickner W; Ungermann C
    J Cell Biol; 2000 Mar; 148(6):1231-8. PubMed ID: 10725336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A small-molecule competitive inhibitor of phosphatidic acid binding by the AAA+ protein NSF/Sec18 blocks the SNARE-priming stage of vacuole fusion.
    Sparks RP; Arango AS; Starr ML; Aboff ZL; Hurst LR; Rivera-Kohr DA; Zhang C; Harnden KA; Jenkins JL; Guida WC; Tajkhorshid E; Fratti RA
    J Biol Chem; 2019 Nov; 294(46):17168-17185. PubMed ID: 31515268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining the functions of trans-SNARE pairs.
    Ungermann C; Sato K; Wickner W
    Nature; 1998 Dec; 396(6711):543-8. PubMed ID: 9859990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SNAREs and NSF in targeted membrane fusion.
    Hay JC; Scheller RH
    Curr Opin Cell Biol; 1997 Aug; 9(4):505-12. PubMed ID: 9261050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion.
    Xu Z; Sato K; Wickner W
    Cell; 1998 Jun; 93(7):1125-34. PubMed ID: 9657146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms.
    Wickner W; Haas A
    Annu Rev Biochem; 2000; 69():247-75. PubMed ID: 10966459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical analysis of the Saccharomyces cerevisiae SEC18 gene product: implications for the molecular mechanism of membrane fusion.
    Steel GJ; Laude AJ; Boojawan A; Harvey DJ; Morgan A
    Biochemistry; 1999 Jun; 38(24):7764-72. PubMed ID: 10387016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion.
    Müller JM; Rabouille C; Newman R; Shorter J; Freemont P; Schiavo G; Warren G; Shima DT
    Nat Cell Biol; 1999 Oct; 1(6):335-40. PubMed ID: 10559959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and turnover of NSF- and SNAP-containing "fusion" complexes occur on undocked, clathrin-coated vesicle-derived membranes.
    Swanton E; Sheehan J; Bishop N; High S; Woodman P
    Mol Biol Cell; 1998 Jul; 9(7):1633-47. PubMed ID: 9658160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion.
    Wang L; Merz AJ; Collins KM; Wickner W
    J Cell Biol; 2003 Feb; 160(3):365-74. PubMed ID: 12566429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNAREpins are functionally resistant to disruption by NSF and alphaSNAP.
    Weber T; Parlati F; McNew JA; Johnston RJ; Westermann B; Söllner TH; Rothman JE
    J Cell Biol; 2000 May; 149(5):1063-72. PubMed ID: 10831610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-terminal domain of the t-SNARE Vam3p coordinates priming and docking in yeast vacuole fusion.
    Laage R; Ungermann C
    Mol Biol Cell; 2001 Nov; 12(11):3375-85. PubMed ID: 11694574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A heterodimer of thioredoxin and I(B)2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance.
    Xu Z; Mayer A; Muller E; Wickner W
    J Cell Biol; 1997 Jan; 136(2):299-306. PubMed ID: 9015301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic.
    Lupashin VV; Pokrovskaya ID; McNew JA; Waters MG
    Mol Biol Cell; 1997 Dec; 8(12):2659-76. PubMed ID: 9398683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.