These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 12915066)

  • 1. Technetium species induced in maize as measured by phosphorimager.
    Simonoff M; Khijniak TV; Sergeant C; Vesvres MH; Pravikoff MS; Leclerc-Cessac E; Echevarria G; Denys S
    J Environ Radioact; 2003; 70(1-2):139-54. PubMed ID: 12915066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Availability of 99Tc in undisturbed soil cores.
    Denys S; Echevarria G; Florentin L; Leclerc-Cessac E; Morel JL
    J Environ Radioact; 2003; 70(1-2):115-26. PubMed ID: 12915064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of climatic conditions and soil type on 99TcO4- uptake by rye grass.
    Echevarria G; Morel JL; Florentin L; Leclerc-Cessac E
    J Environ Radioact; 2003; 70(1-2):85-97. PubMed ID: 12915062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil migration and plant uptake of technetium from a fluctuating water table.
    Ashworth DJ; Shaw G
    J Environ Radioact; 2005; 81(2-3):155-71. PubMed ID: 15795032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speciation of technetium(IV) in bicarbonate media.
    Alliot I; Alliot C; Vitorge P; Fattahi M
    Environ Sci Technol; 2009 Dec; 43(24):9174-82. PubMed ID: 20000508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of transfer and distribution of technetium and rhenium in radish plants from nutrient solution.
    Tagami K; Uchida S
    Appl Radiat Isot; 2004 Dec; 61(6):1203-10. PubMed ID: 15388111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions.
    Bi X; Feng X; Yang Y; Li X; Shin GP; Li F; Qiu G; Li G; Liu T; Fu Z
    Environ Pollut; 2009 Mar; 157(3):834-9. PubMed ID: 19100668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple determination of (99)Tc in radioactive waste using Tc extraction disk and imaging plates.
    Kameo Y; Katayama A; Hoshi A; Haraga T; Nakashima M
    Appl Radiat Isot; 2010 Jan; 68(1):139-43. PubMed ID: 19740672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake, biotransformation, and elimination of 99Tc in duckweed.
    Hattink J; Harms AV; de Goeij JJ
    Sci Total Environ; 2003 Aug; 312(1-3):59-65. PubMed ID: 12873399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of 99-technetium (VII) by Fe(II)-goethite and limited reoxidation.
    Um W; Chang HS; Icenhower JP; Lukens WW; Serne RJ; Qafoku NP; Westsik JH; Buck EC; Smith SC
    Environ Sci Technol; 2011 Jun; 45(11):4904-13. PubMed ID: 21557602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming.
    Cunha KP; do Nascimento CW; Pimentel RM; Ferreira CP
    J Hazard Mater; 2008 Dec; 160(1):228-34. PubMed ID: 18417284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil availability, plant uptake and soil to plant transfer of 99Tc--a review.
    Bennett R; Willey N
    J Environ Radioact; 2003; 65(2):215-31. PubMed ID: 12527237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention and phytoavailability of radioniobium in soils.
    Echevarria G; Morel JL; Leclerc-Cessac E
    J Environ Radioact; 2005; 78(3):343-52. PubMed ID: 15511567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial reduction of 99Tc in organic matter-rich soils.
    Abdelouas A; Grambow B; Fattahi M; Andrès Y; Leclerc-Cessac E
    Sci Total Environ; 2005 Jan; 336(1-3):255-68. PubMed ID: 15589263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the fate of radioactive nickel in cultivated soil cores.
    Denys S; Echevarria G; Florentin L; Leclerc E; Morel JL
    J Environ Radioact; 2009 Oct; 100(10):884-9. PubMed ID: 19632751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils.
    Komárek M; Tlustos P; Száková J; Chrastný V; Ettler V
    Chemosphere; 2007 Mar; 67(4):640-51. PubMed ID: 17184814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of technetium from solution by algal flagellate Euglena gracilis.
    Ishii N; Uchida S
    J Environ Qual; 2006; 35(6):2017-20. PubMed ID: 17071870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris.
    Rufyikiri G; Wannijn J; Wang L; Thiry Y
    Environ Pollut; 2006 Jun; 141(3):420-7. PubMed ID: 16271279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the phytotoxicity of contaminated sediments deposited "on soil": II. Impact of water draining from deposits on the development and physiological status of neighbouring plants at growth stage.
    Bedell JP; Briant A; Delolme C; Lassabatère L; Perrodin Y
    Chemosphere; 2006 Mar; 62(8):1311-23. PubMed ID: 16169046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gram-negative bacteria responsible for insoluble technetium formation and the fate of insoluble Tc in the water column above flooded paddy soil.
    Ishii N; Uchida S
    Chemosphere; 2005 Jul; 60(2):157-63. PubMed ID: 15914234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.