BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

658 related articles for article (PubMed ID: 12915663)

  • 21. Efficacy of ciprofibrate in primary type II and IV hyperlipidemia: the Italian multicenter study.
    Cattin L; Da Col PG; Feruglio FS; Finazzo L; Rimondi S; Descovich G; Manzato E; Zambon S; Crepaldi G; Siepi D
    Clin Ther; 1990; 12(6):482-8. PubMed ID: 2289217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ciprofibrate effects on carbohydrate and lipid metabolism in type 2 diabetes mellitus subjects.
    Hernández-Mijares A; Lluch I; Vizcarra E; Martínez-Triguero ML; Ascaso JF; Carmena R
    Nutr Metab Cardiovasc Dis; 2000 Feb; 10(1):1-6. PubMed ID: 10812581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Change in very low-, low-, and high-density lipoproteins during lipid lowering (bezafibrate) therapy: studies in type IIA and type IIb hyperlipoproteinaemia.
    Gavish D; Oschry Y; Fainaru M; Eisenberg S
    Eur J Clin Invest; 1986 Feb; 16(1):61-8. PubMed ID: 3084275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The atherogenic role of triglycerides and small, dense low density lipoproteins: impact of ciprofibrate therapy.
    Chapman MJ; Bruckert E
    Atherosclerosis; 1996 Jul; 124 Suppl():S21-8. PubMed ID: 8831912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficacy and safety of ciprofibrate in hyperlipoproteinaemias.
    Turpin G; Bruckert E
    Atherosclerosis; 1996 Jul; 124 Suppl():S83-7. PubMed ID: 8831920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-density lipoprotein size and subclasses are markers of clinically apparent and non-apparent atherosclerosis in type 2 diabetes.
    Berneis K; Jeanneret C; Muser J; Felix B; Miserez AR
    Metabolism; 2005 Feb; 54(2):227-34. PubMed ID: 15690318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Persistent changes in lipoprotein lipids after a single infusion of ascending doses of MDCO-216 (apoA-IMilano/POPC) in healthy volunteers and stable coronary artery disease patients.
    Kempen HJ; Gomaraschi M; Simonelli S; Calabresi L; Moerland M; Otvos J; Jeyarajah E; Kallend D; Wijngaard PLJ
    Atherosclerosis; 2016 Dec; 255():17-24. PubMed ID: 27816804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ciprofibrate increases cholesteryl ester transfer protein gene expression and the indirect reverse cholesterol transport to the liver.
    Bighetti EJ; Patrício PR; Casquero AC; Berti JA; Oliveira HC
    Lipids Health Dis; 2009 Nov; 8():50. PubMed ID: 19930639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of ciprofibrate on lipoprotien metabolism and oxidative stress parameters in patients with type 2 diabetes mellitus and atherogenic lipoprotein phenotype.
    Raslová K; Nagyová A; Dobiásová M; Ptácková K; Dusinská M
    Acta Diabetol; 2000; 37(3):131-4. PubMed ID: 11277313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-density lipoproteins from probucol-treated patients have increased capacity to promote cholesterol efflux from mouse peritoneal macrophages loaded with acetylated low-density lipoproteins.
    Ishigami M; Yamashita S; Sakai N; Hirano K; Arai T; Maruyama T; Takami S; Koyama M; Kameda-Takemura K; Matsuzawa Y
    Eur J Clin Invest; 1997 Apr; 27(4):285-92. PubMed ID: 9134376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ciprofibrate versus gemfibrozil in the treatment of mixed hyperlipidemias: an open-label, multicenter study.
    Aguilar-Salinas CA; Fanghänel-Salmón G; Meza E; Montes J; Gulías-Herrero A; Sánchez L; Monterrubio-Flores EA; González-Valdez H; Gómez Pérez FJ
    Metabolism; 2001 Jun; 50(6):729-33. PubMed ID: 11398153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the efficacy of simvastatin and standard fibrate therapy in the treatment of primary hypercholesterolemia and combined hyperlipidemia.
    Bruckert E; De Gennes JL; Malbecq W; Baigts F
    Clin Cardiol; 1995 Nov; 18(11):621-9. PubMed ID: 8590530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transfer of lipids to high-density lipoprotein (HDL) is altered in patients with familial hypercholesterolemia.
    Martinez LR; Santos RD; Miname MH; Deus DF; Lima ES; Maranhão RC
    Metabolism; 2013 Aug; 62(8):1061-4. PubMed ID: 23540443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice.
    Navab M; Anantharamaiah GM; Reddy ST; Hama S; Hough G; Grijalva VR; Wagner AC; Frank JS; Datta G; Garber D; Fogelman AM
    Circulation; 2004 Jun; 109(25):3215-20. PubMed ID: 15197147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Torcetrapib differentially modulates the biological activities of HDL2 and HDL3 particles in the reverse cholesterol transport pathway.
    Catalano G; Julia Z; Frisdal E; Vedie B; Fournier N; Le Goff W; Chapman MJ; Guerin M
    Arterioscler Thromb Vasc Biol; 2009 Feb; 29(2):268-75. PubMed ID: 19038848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decrease of plasma large, light LDL (LDL1), HDL2 and HDL3 levels with concomitant increase of cholesteryl ester transfer protein (CETP) activity by probucol in type II hyperlipoproteinemia.
    Homma Y; Kobayashi T; Yamaguchi H; Sakane H; Ozawa H; Matsuda M; Mikami Y; Mikami Y; Nakamura H
    Artery; 1993; 20(1):1-18. PubMed ID: 8447724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atheroprotective reverse cholesterol transport pathway is defective in familial hypercholesterolemia.
    Bellanger N; Orsoni A; Julia Z; Fournier N; Frisdal E; Duchene E; Bruckert E; Carrie A; Bonnefont-Rousselot D; Pirault J; Saint-Charles F; Chapman MJ; Lesnik P; Le Goff W; Guerin M
    Arterioscler Thromb Vasc Biol; 2011 Jul; 31(7):1675-81. PubMed ID: 21527752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The peroxisome proliferator-activated receptor alpha (PPARalpha) agonist ciprofibrate inhibits apolipoprotein B mRNA editing in low density lipoprotein receptor-deficient mice: effects on plasma lipoproteins and the development of atherosclerotic lesions.
    Fu T; Mukhopadhyay D; Davidson NO; Borensztajn J
    J Biol Chem; 2004 Jul; 279(27):28662-9. PubMed ID: 15123680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cholesteryl ester transfer protein decreases high-density lipoprotein and severely aggravates atherosclerosis in APOE*3-Leiden mice.
    Westerterp M; van der Hoogt CC; de Haan W; Offerman EH; Dallinga-Thie GM; Jukema JW; Havekes LM; Rensen PC
    Arterioscler Thromb Vasc Biol; 2006 Nov; 26(11):2552-9. PubMed ID: 16946130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LDL Receptor Regulates the Reverse Transport of Macrophage-Derived Unesterified Cholesterol via Concerted Action of the HDL-LDL Axis: Insight From Mouse Models.
    Cedó L; Metso J; Santos D; García-León A; Plana N; Sabate-Soler S; Rotllan N; Rivas-Urbina A; Méndez-Lara KA; Tondo M; Girona J; Julve J; Pallarès V; Benitez-Amaro A; Llorente-Cortes V; Pérez A; Gómez-Coronado D; Ruotsalainen AK; Levonen AL; Sanchez-Quesada JL; Masana L; Kovanen PT; Jauhiainen M; Lee-Rueckert M; Blanco-Vaca F; Escolà-Gil JC
    Circ Res; 2020 Aug; 127(6):778-792. PubMed ID: 32495699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.