These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 12916201)

  • 1. [A kinetic model of chlorine decay reacting with organics in water distribution systems].
    Zhou J; Zhao H; Xue G
    Huan Jing Ke Xue; 2003 May; 24(3):45-9. PubMed ID: 12916201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A suitable model of combined effects of temperature and initial condition on chlorine bulk decay in water distribution systems.
    Fisher I; Kastl G; Sathasivan A
    Water Res; 2012 Jun; 46(10):3293-303. PubMed ID: 22560619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A variable reaction rate model for chlorine decay in drinking water due to the reaction with dissolved organic matter.
    Hua P; Vasyukova E; Uhl W
    Water Res; 2015 May; 75():109-22. PubMed ID: 25765169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Bayesian statistics to estimate the coefficients of a two- component second-order chlorine bulk decay model for a water distribution system.
    Huang JJ; McBean EA
    Water Res; 2007 Jan; 41(2):287-94. PubMed ID: 17169396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reactive species model for chlorine decay and THM formation under rechlorination conditions.
    Boccelli DL; Tryby ME; Uber JG; Summers RS
    Water Res; 2003 Jun; 37(11):2654-66. PubMed ID: 12753843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of advanced treatment on chlorine decay in metallic pipes.
    Rossman LA
    Water Res; 2006 Jul; 40(13):2493-502. PubMed ID: 16806395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second-order chlorine decay and trihalomethanes formation in a pilot-scale water distribution systems.
    Li C; Yang YJ; Yu J; Zhang TQ; Mao X; Shao W
    Water Environ Res; 2012 Aug; 84(8):656-61. PubMed ID: 22953450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-site chlorine decay model for the combined effects of pH, water distribution temperature and in-home heating profiles using differential evolution.
    Liu B; Reckhow DA; Li Y
    Water Res; 2014 Apr; 53():47-57. PubMed ID: 24495986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disinfectant decay and disinfection by-products formation model development: chlorination and ozonation by-products.
    Sohn J; Amy G; Cho J; Lee Y; Yoon Y
    Water Res; 2004 May; 38(10):2461-78. PubMed ID: 15159150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a model for predicting trihalomethanes propagation in water distribution systems.
    Li X; Zhao HB
    Chemosphere; 2006 Feb; 62(6):1028-32. PubMed ID: 16321423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of residual chlorine in water distribution system.
    Li X; Gu DM; Qi JY; M U; Zhao HB
    J Environ Sci (China); 2003 Jan; 15(1):136-44. PubMed ID: 12602618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A variable parabolic reaction coefficient model for chlorine decay in bulk water.
    Zhong D; Feng W; Ma W; Ma J; Du X; Zhou Z
    Water Res; 2021 Aug; 201():117302. PubMed ID: 34126471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential absorbance study of effects of temperature on chlorine consumption and formation of disinfection by-products in chlorinated water.
    Roccaro P; Chang HS; Vagliasindi FG; Korshin GV
    Water Res; 2008 Apr; 42(8-9):1879-88. PubMed ID: 18063005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorine decay studies in water supply system.
    Munavalli GR; Kulkarni MA
    J Environ Sci Eng; 2009 Jan; 51(1):53-8. PubMed ID: 21114154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water quality modeling in the dead end sections of drinking water distribution networks.
    Abokifa AA; Yang YJ; Lo CS; Biswas P
    Water Res; 2016 Feb; 89():107-17. PubMed ID: 26641015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and testing of reactive contaminant transport in drinking water pipes: chlorine response and implications for online contaminant detection.
    Jeffrey Yang Y; Goodrich JA; Clark RM; Li SY
    Water Res; 2008 Mar; 42(6-7):1397-412. PubMed ID: 17991507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reply to comment on "Using Bayesian statistics to estimate the coefficients of a two-component second-order chlorine bulk decay model for a water distribution system" by Huang, J.J., McBean E.A. Water Res. (2007).
    Shen H; Huang JJ; McBean E
    Water Res; 2011 Mar; 45(6):2355-7. PubMed ID: 21315403
    [No Abstract]   [Full Text] [Related]  

  • 18. Dynamic simulation of multicomponent reaction transport in water distribution systems.
    Munavalli GR; Mohan Kumar MS
    Water Res; 2004 Apr; 38(8):1971-88. PubMed ID: 15087178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development and application of a multi-species water quality model for water distribution systems with EPANET-MSX].
    Sun F; Chen JN; Zeng SY
    Huan Jing Ke Xue; 2008 Dec; 29(12):3360-7. PubMed ID: 19256368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of suitable chlorine bulk-decay models for water distribution systems.
    Fisher I; Kastl G; Sathasivan A
    Water Res; 2011 Oct; 45(16):4896-908. PubMed ID: 21782207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.