These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12916623)

  • 21. Fabrication of TiO
    De R; Haque SM; Sikdar MK; Sahoo PK; Rao KD
    Nanotechnology; 2021 Mar; 32(24):245708. PubMed ID: 33760757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum.
    Chang YJ; Chen YT
    Opt Express; 2011 Jul; 19 Suppl 4():A875-87. PubMed ID: 21747557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vacuum evaporated porous silicon photonic interference filters.
    Kaminska K; Brown T; Beydaghyan G; Robbie K
    Appl Opt; 2003 Jul; 42(20):4212-9. PubMed ID: 12856735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antireflection Enhancement by Composite Nanoporous Zeolite 3A-Carbon Thin Film.
    Stetsenko M; Pullano SA; Margitych T; Maksimenko L; Hassan A; Kryvyi S; Hu R; Huang C; Ziniuk R; Golovynskyi S; Babichuk I; Li Β; Qu J; Fiorillo AS
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31752315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth Assisted by Glancing Angle Deposition: A New Technique to Fabricate Highly Porous Anisotropic Thin Films.
    Sanchez-Valencia JR; Longtin R; Rossell MD; Gröning P
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8686-93. PubMed ID: 26954074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrathin-layer chromatography nanostructures modified by atomic layer deposition.
    Jim SR; Foroughi-Abari A; Krause KM; Li P; Kupsta M; Taschuk MT; Cadien KC; Brett MJ
    J Chromatogr A; 2013 Jul; 1299():118-25. PubMed ID: 23768654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A facile dip-coating approach based on three silica sols to fabrication of broadband antireflective superhydrophobic coatings.
    Gao L; He J
    J Colloid Interface Sci; 2013 Jun; 400():24-30. PubMed ID: 23582903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Broadband antireflection and field emission properties of TiN-coated Si-nanopillars.
    Chang YM; Ravipati S; Kao PH; Shieh J; Ko FH; Juang JY
    Nanoscale; 2014 Aug; 6(16):9846-51. PubMed ID: 25029029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infrared region.
    Zhang L; Li Y; Sun J; Shen J
    J Colloid Interface Sci; 2008 Mar; 319(1):302-8. PubMed ID: 18068180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-reflective wire-grid polarizers with absorptive interference overlayers.
    Suzuki M; Takada A; Yamada T; Hayasaka T; Sasaki K; Takahashi E; Kumagai S
    Nanotechnology; 2010 Apr; 21(17):175604. PubMed ID: 20368684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observation of the waveguide resonance in a periodically patterned high refractive index broadband antireflection coating.
    Stenzel O; Wilbrandt S; Chen X; Schlegel R; Coriand L; Duparré A; Zeitner U; Benkenstein T; Wächter C
    Appl Opt; 2014 May; 53(14):3147-56. PubMed ID: 24922038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface structured optical coatings with near-perfect broadband and wide-angle antireflective properties.
    Perl EE; McMahon WE; Farrell RM; DenBaars SP; Speck JS; Bowers JE
    Nano Lett; 2014 Oct; 14(10):5960-4. PubMed ID: 25238041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of Thin Film Dissolution in Water with in Situ Monitoring of Film Thickness Using Reflectometry.
    Yersak AS; Lewis RJ; Tran J; Lee YC
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17622-30. PubMed ID: 27308723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transparent superhydrophobic films based on silica nanoparticles.
    Bravo J; Zhai L; Wu Z; Cohen RE; Rubner MF
    Langmuir; 2007 Jun; 23(13):7293-8. PubMed ID: 17523683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition.
    van Popta AC; Hawkeye MM; Sit JC; Brett MJ
    Opt Lett; 2004 Nov; 29(21):2545-7. PubMed ID: 15584289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings.
    Szeghalmi A; Helgert M; Brunner R; Heyroth F; Gösele U; Knez M
    Appl Opt; 2009 Mar; 48(9):1727-32. PubMed ID: 19305471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoporous antireflection coating for high-temperature applications in the infrared.
    Martir LIA; Currano LJ; Zgrabik CM; Zhang D; Weiblen R; Montalbano T; Talisa NB; Purcell MJ; Mooers CT; Thomas ME; Young DW; Khurgin J
    Appl Opt; 2023 Dec; 62(36):9553-9558. PubMed ID: 38108780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanically stable antireflection and antifogging coatings fabricated by the layer-by-layer deposition process and postcalcination.
    Zhang L; Li Y; Sun J; Shen J
    Langmuir; 2008 Oct; 24(19):10851-7. PubMed ID: 18767828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement in broadband and quasi-omnidirectional antireflection of nanopillar arrays by ion milling.
    Huang Z; Hawkeye MM; Brett MJ
    Nanotechnology; 2012 Jul; 23(27):275703. PubMed ID: 22705498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluoride antireflection coatings deposited at 193 nm.
    Liu MC; Lee CC; Liao BH; Kaneko M; Nakahira K; Takano Y
    Appl Opt; 2008 May; 47(13):C214-8. PubMed ID: 18449249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.