These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 12916836)

  • 41. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid.
    Kang SW; Kim YB; Shin JD; Kim EK
    Appl Biochem Biotechnol; 2010 Mar; 160(3):780-90. PubMed ID: 19253005
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biodegradation of oil spill by petroleum refineries using consortia of novel bacterial strains.
    Singh B; Bhattacharya A; Channashettar VA; Jeyaseelan CP; Gupta S; Sarma PM; Mandal AK; Lal B
    Bull Environ Contam Toxicol; 2012 Aug; 89(2):257-62. PubMed ID: 22669336
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.
    Adetutu E; Weber J; Aleer S; Dandie CE; Aburto-Medina A; Ball AS; Juhasz AL
    J Hazard Mater; 2013 Oct; 261():847-53. PubMed ID: 23454918
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intrinsic bioremediation of a petroleum-impacted wetland.
    Mills MA; Bonner JS; McDonald TJ; Page CA; Autenrieth RL
    Mar Pollut Bull; 2003 Jul; 46(7):887-99. PubMed ID: 12837307
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of surfactants to improve the biological degradation of petroleum hydrocarbons in a field site study.
    Martienssen M; Schirmer M
    Environ Technol; 2007 May; 28(5):573-82. PubMed ID: 17615966
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrocarbon degradation in soils and methods for soil biotreatment.
    Morgan P; Watkinson RJ
    Crit Rev Biotechnol; 1989; 8(4):305-33. PubMed ID: 2650885
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Biodegradation of petroleum hydrocarbons in soil inoculated with yeasts].
    Ismailov NM
    Mikrobiologiia; 1985; 54(5):835-41. PubMed ID: 2935717
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons.
    Cook RL; Hesterberg D
    Int J Phytoremediation; 2013; 15(9):844-60. PubMed ID: 23819280
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Activation of indigenous micorflora in oil-contaminated soils using photoluminescent films].
    Svarovskaia LI; Altunina LK; Filatov DA
    Prikl Biokhim Mikrobiol; 2008; 44(6):647-52. PubMed ID: 19145971
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Laboratory and field verification of a method to estimate the extent of petroleum biodegradation in soil.
    Douglas GS; Hardenstine JH; Liu B; Uhler AD
    Environ Sci Technol; 2012 Aug; 46(15):8279-87. PubMed ID: 22694180
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Potential of preliminary test methods to predict biodegradation performance of petroleum hydrocarbons in soil.
    Aichberger H; Hasinger M; Braun R; Loibner AP
    Biodegradation; 2005 Mar; 16(2):115-25. PubMed ID: 15730022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste.
    Mikkonen A; Hakala KP; Lappi K; Kondo E; Vaalama A; Suominen L
    Environ Pollut; 2012 Mar; 162():374-80. PubMed ID: 22243888
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrocarbon biodegradation in intertidal wetland sediments.
    McGenity TJ
    Curr Opin Biotechnol; 2014 Jun; 27():46-54. PubMed ID: 24863896
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of gastrointestinal solubilization of petroleum hydrocarbon residues in soil using an in vitro physiologically based model.
    Holman HY; Goth-Goldstein R; Aston D; Yun M; Kengsoontra J
    Environ Sci Technol; 2002 Mar; 36(6):1281-6. PubMed ID: 11944681
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling hydrocarbon biodegradation in tidal aquifers with water-saturation and heat inhibition effects.
    El-Kadi AI
    J Contam Hydrol; 2001 Sep; 51(1-2):97-125. PubMed ID: 11530929
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Approximate analytical model for transient transport and oxygen-limited biodegradation of vapor-phase petroleum hydrocarbon compound in soil.
    Zhu ZW; Feng SJ; Chen HX; Chen ZL; Ding XH; Peng CH
    Chemosphere; 2022 Aug; 300():134522. PubMed ID: 35395265
    [TBL] [Abstract][Full Text] [Related]  

  • 57. BIOB: a mathematical model for the biodegradation of low solubility hydrocarbons.
    Geng X; Boufadel MC; Personna YR; Lee K; Tsao D; Demicco ED
    Mar Pollut Bull; 2014 Jun; 83(1):138-47. PubMed ID: 24768259
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biogeochemical modelling to assess the effect of bioclogging on multiple electron acceptor-mediated petroleum hydrocarbon bioremediation in vadose zone.
    Srivastava A; Valsala R; Jagadevan S
    Environ Sci Pollut Res Int; 2024 Apr; 31(20):29902-29915. PubMed ID: 38594561
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessing the aerobic biodegradability of 14 hydrocarbons in two soils using a simple microcosm/respiration method.
    Miles RA; Doucette WJ
    Chemosphere; 2001 Nov; 45(6-7):1085-90. PubMed ID: 11695585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phytoremediation of small-scale oil spills in fresh marsh environments: a mesocosm simulation.
    Dowty RA; Shaffer GP; Hester MW; Childers GW; Campo FM; Greene MC
    Mar Environ Res; 2001 Sep; 52(3):195-211. PubMed ID: 11570802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.