These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12916904)

  • 1. Simulating the hydrodynamic conditions in the United States Pharmacopeia paddle dissolution apparatus.
    McCarthy LG; Kosiol C; Healy AM; Bradley G; Sexton JC; Corrigan OI
    AAPS PharmSciTech; 2003; 4(2):E22. PubMed ID: 12916904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Evaluation of Dissolution Performance in a USP 2 Setup and Alternative Stirrers and Vessel Designs: A Systematic Computational Investigation.
    Salehi N; Al-Gousous J; Hens B; Amidon GL; Ziff RM; Amidon GE
    Mol Pharm; 2024 May; 21(5):2406-2414. PubMed ID: 38639477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational fluid dynamics modeling of the paddle dissolution apparatus: agitation rate, mixing patterns, and fluid velocities.
    McCarthy LG; Bradley G; Sexton JC; Corrigan OI; Healy AM
    AAPS PharmSciTech; 2004 Apr; 5(2):e31. PubMed ID: 15760089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic investigation of USP dissolution test apparatus II.
    Bai G; Armenante PM; Plank RV; Gentzler M; Ford K; Harmon P
    J Pharm Sci; 2007 Sep; 96(9):2327-49. PubMed ID: 17573698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Computational Fluid Dynamics to Compare Shear Rate and Turbulence in the TIM-Automated Gastric Compartment With USP Apparatus II.
    Hopgood M; Reynolds G; Barker R
    J Pharm Sci; 2018 Jul; 107(7):1911-1919. PubMed ID: 29608886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of hydrodynamics in the basket dissolution apparatus using computational fluid dynamics--dissolution rate implications.
    D'Arcy DM; Corrigan OI; Healy AM
    Eur J Pharm Sci; 2006 Feb; 27(2-3):259-67. PubMed ID: 16314078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear-induced variability in the United States Pharmacopeia Apparatus 2: modifications to the existing system.
    Baxter JL; Kukura J; Muzzio FJ
    AAPS J; 2006 Jan; 7(4):E857-64. PubMed ID: 16594638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear distribution and variability in the USP Apparatus 2 under turbulent conditions.
    Kukura J; Baxter JL; Muzzio FJ
    Int J Pharm; 2004 Jul; 279(1-2):9-17. PubMed ID: 15234789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity profiles and shear strain rate variability in the USP Dissolution Testing Apparatus 2 at different impeller agitation speeds.
    Bai G; Wang Y; Armenante PM
    Int J Pharm; 2011 Jan; 403(1-2):1-14. PubMed ID: 20883758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic dissolution rate modeling for the pharmacopoeia apparatus rotating disk compared to flow channel method.
    Mattusch AM; Schaldach G; Bartsch J; Thommes M
    Pharm Dev Technol; 2024 Apr; 29(4):281-290. PubMed ID: 38501605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic simulation (computational fluid dynamics) of asymmetrically positioned tablets in the paddle dissolution apparatus: impact on dissolution rate and variability.
    D'Arcy DM; Corrigan OI; Healy AM
    J Pharm Pharmacol; 2005 Oct; 57(10):1243-50. PubMed ID: 16259752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Hydrodynamics in the USP Basket Apparatus Using Computational Fluid Dynamics.
    Martinez AF; Sinha K; Nere N; Slade R; Castleberry S
    J Pharm Sci; 2020 Mar; 109(3):1231-1241. PubMed ID: 31743682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Mass Transfer Analysis of Drug Particle Dissolution, Highlighting the Hydrodynamics, pH, Particle Size, and Buffer Effects for the Dissolution of Ionizable and Nonionizable Drugs in a Compendial Dissolution Vessel.
    Salehi N; Al-Gousous J; Mudie DM; Amidon GL; Ziff RM; Amidon GE
    Mol Pharm; 2020 Oct; 17(10):3870-3884. PubMed ID: 32886520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D hydrodynamics and shear rates' variability in the United States Pharmacopeia Paddle Dissolution Apparatus.
    Ameur H; Bouzit M
    Int J Pharm; 2013 Aug; 452(1-2):42-51. PubMed ID: 23680733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamics-induced variability in the USP apparatus II dissolution test.
    Baxter JL; Kukura J; Muzzio FJ
    Int J Pharm; 2005 Mar; 292(1-2):17-28. PubMed ID: 15725550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A better dissolution method for ranitidine tablets USP.
    Cappola ML
    Pharm Dev Technol; 2001; 6(1):11-7. PubMed ID: 11247270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring bulk volume, particle size and particle motion definitions to increase the predictive ability of in vitro dissolution simulations.
    Navas-Bachiller M; Persoons T; D'Arcy DM
    Eur J Pharm Sci; 2022 Jul; 174():106185. PubMed ID: 35398291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards determining appropriate hydrodynamic conditions for in vitro in vivo correlations using computational fluid dynamics.
    D'Arcy DM; Healy AM; Corrigan OI
    Eur J Pharm Sci; 2009 Jun; 37(3-4):291-9. PubMed ID: 19491018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational hydrodynamic comparison of a mini vessel and a USP 2 dissolution testing system to predict the dynamic operating conditions for similarity of dissolution performance.
    Wang B; Bredael G; Armenante PM
    Int J Pharm; 2018 Mar; 539(1-2):112-130. PubMed ID: 29341921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro dissolution models for the prediction of in vivo performance of an oral mesoporous silica formulation.
    McCarthy CA; Faisal W; O'Shea JP; Murphy C; Ahern RJ; Ryan KB; Griffin BT; Crean AM
    J Control Release; 2017 Mar; 250():86-95. PubMed ID: 28132935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.