BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 12917389)

  • 1. Relationships between intracellular calcium and afterhyperpolarizations in neocortical pyramidal neurons.
    Abel HJ; Lee JC; Callaway JC; Foehring RC
    J Neurophysiol; 2004 Jan; 91(1):324-35. PubMed ID: 12917389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of temperature on calcium transients and Ca2+-dependent afterhyperpolarizations in neocortical pyramidal neurons.
    Lee JC; Callaway JC; Foehring RC
    J Neurophysiol; 2005 Apr; 93(4):2012-20. PubMed ID: 15548621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of a T-type Ca2+channel-activated slow afterhyperpolarization in thalamic paraventricular nucleus and other thalamic midline neurons.
    Zhang L; Renaud LP; Kolaj M
    J Neurophysiol; 2009 Jun; 101(6):2741-50. PubMed ID: 19321637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms underlying activation of the slow AHP in rat hippocampal neurons.
    Lima PA; Marrion NV
    Brain Res; 2007 May; 1150():74-82. PubMed ID: 17395164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact.
    Gu N; Hu H; Vervaeke K; Storm JF
    J Neurophysiol; 2008 Nov; 100(5):2589-604. PubMed ID: 18684909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons.
    Fernández de Sevilla D; Fuenzalida M; Porto Pazos AB; Buño W
    J Neurophysiol; 2007 May; 97(5):3242-55. PubMed ID: 17329628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow afterhyperpolarization governs the development of NMDA receptor-dependent afterdepolarization in CA1 pyramidal neurons during synaptic stimulation.
    Wu WW; Chan CS; Disterhoft JF
    J Neurophysiol; 2004 Oct; 92(4):2346-56. PubMed ID: 15190096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of apamin-sensitive SK channels to the firing precision but not to the slow afterhyperpolarization and spike frequency adaptation in snail neurons.
    Vatanparast J; Janahmadi M
    Brain Res; 2009 Feb; 1255():57-66. PubMed ID: 19100724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual and additive effects of neuromodulators on the slow components of afterhyperpolarization currents in layer V pyramidal cells of the rat medial prefrontal cortex.
    Satake T; Mitani H; Nakagome K; Kaneko K
    Brain Res; 2008 Sep; 1229():47-60. PubMed ID: 18634769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-activated afterhyperpolarizations regulate synchronization and timing of epileptiform bursts in hippocampal CA3 pyramidal neurons.
    Fernández de Sevilla D; Garduño J; Galván E; Buño W
    J Neurophysiol; 2006 Dec; 96(6):3028-41. PubMed ID: 16971683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential cholinergic modulation of Ca2+ transients evoked by backpropagating action potentials in apical and basal dendrites of cortical pyramidal neurons.
    Cho KH; Jang HJ; Lee EH; Yoon SH; Hahn SJ; Jo YH; Kim MS; Rhie DJ
    J Neurophysiol; 2008 Jun; 99(6):2833-43. PubMed ID: 18417635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of common anesthetics on dendritic properties in layer 5 neocortical pyramidal neurons.
    Potez S; Larkum ME
    J Neurophysiol; 2008 Mar; 99(3):1394-407. PubMed ID: 18199815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous activity and properties of two types of principal neurons from the ventral tegmental area of rat.
    Koyama S; Kanemitsu Y; Weight FF
    J Neurophysiol; 2005 Jun; 93(6):3282-93. PubMed ID: 15659533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SKCa channels mediate the medium but not the slow calcium-activated afterhyperpolarization in cortical neurons.
    Villalobos C; Shakkottai VG; Chandy KG; Michelhaugh SK; Andrade R
    J Neurosci; 2004 Apr; 24(14):3537-42. PubMed ID: 15071101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of a slow post-spike afterhyperpolarization by calcineurin inhibitors.
    Vogalis F; Harvey JR; Furness JB
    Eur J Neurosci; 2004 May; 19(10):2650-8. PubMed ID: 15147299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells.
    Gu N; Vervaeke K; Hu H; Storm JF
    J Physiol; 2005 Aug; 566(Pt 3):689-715. PubMed ID: 15890705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic excitability during increased synaptic activity in rat neocortical L5 pyramidal neurons.
    Bar-Yehuda D; Ben-Porat H; Korngreen A
    Eur J Neurosci; 2008 Dec; 28(11):2183-94. PubMed ID: 19046365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+)-dependent K(+) currents and spike-frequency adaptation in medial entorhinal cortex layer II stellate cells.
    Khawaja FA; Alonso AA; Bourque CW
    Hippocampus; 2007; 17(12):1143-8. PubMed ID: 17880008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity in the interaction of high-voltage-activated Ca
    Kirchner MK; Foehring RC; Callaway J; Armstrong WE
    J Neurophysiol; 2018 Oct; 120(4):1728-1739. PubMed ID: 30020842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two pathways for the activation of small-conductance potassium channels in neurons of substantia nigra pars reticulata.
    Yanovsky Y; Zhang W; Misgeld U
    Neuroscience; 2005; 136(4):1027-36. PubMed ID: 16203104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.