These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 12917398)
1. Identification and mutational analysis of Mg2+ binding site in EcoP15I DNA methyltransferase: involvement in target base eversion. Bist P; Rao DN J Biol Chem; 2003 Oct; 278(43):41837-48. PubMed ID: 12917398 [TBL] [Abstract][Full Text] [Related]
2. A mutation in the Mod subunit of EcoP15I restriction enzyme converts the DNA methyltransferase to a site-specific endonuclease. Bist P; Madhusoodanan UK; Rao DN J Biol Chem; 2007 Feb; 282(6):3520-30. PubMed ID: 17148461 [TBL] [Abstract][Full Text] [Related]
3. Functional analysis of conserved motifs in EcoP15I DNA methyltransferase. Ahmad I; Rao DN J Mol Biol; 1996 Jun; 259(2):229-40. PubMed ID: 8656425 [TBL] [Abstract][Full Text] [Related]
4. Asymmetric DNA methylation by dimeric EcoP15I DNA methyltransferase. Urulangodi M; Dhanaraju R; Gupta K; Roy RP; Bujnicki JM; Rao DN Biochimie; 2016; 128-129():70-82. PubMed ID: 27422119 [TBL] [Abstract][Full Text] [Related]
5. Functional roles of the conserved aromatic amino acid residues at position 108 (motif IV) and position 196 (motif VIII) in base flipping and catalysis by the N6-adenine DNA methyltransferase from Thermus aquaticus. Pues H; Bleimling N; Holz B; Wölcke J; Weinhold E Biochemistry; 1999 Feb; 38(5):1426-34. PubMed ID: 9931007 [TBL] [Abstract][Full Text] [Related]
6. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence. Reddy YV; Rao DN J Mol Biol; 2000 May; 298(4):597-610. PubMed ID: 10788323 [TBL] [Abstract][Full Text] [Related]
7. Probing the role of cysteine residues in the EcoP15I DNA methyltransferase. Reddy YV; Rao DN J Biol Chem; 1998 Sep; 273(37):23866-76. PubMed ID: 9726999 [TBL] [Abstract][Full Text] [Related]
8. Interaction of EcoP15I DNA methyltransferase with oligonucleotides containing the asymmetric sequence 5'-CAGCAG-3'. Ahmad I; Rao DN J Mol Biol; 1994 Sep; 242(4):378-88. PubMed ID: 7932697 [TBL] [Abstract][Full Text] [Related]
9. Functional analysis of conserved motifs in type III restriction-modification enzymes. Saha S; Ahmad I; Reddy YV; Krishnamurthy V; Rao DN Biol Chem; 1998; 379(4-5):511-7. PubMed ID: 9628345 [TBL] [Abstract][Full Text] [Related]
10. Functional roles of conserved amino acid residues in DNA methyltransferases investigated by site-directed mutagenesis of the EcoRV adenine-N6-methyltransferase. Roth M; Helm-Kruse S; Friedrich T; Jeltsch A J Biol Chem; 1998 Jul; 273(28):17333-42. PubMed ID: 9651316 [TBL] [Abstract][Full Text] [Related]
11. Role of histidine residues in EcoP15I DNA methyltransferase activity as probed by chemical modification and site-directed mutagenesis. Jois PS; Madhu N; Rao DN Biochem J; 2008 Mar; 410(3):543-53. PubMed ID: 17995451 [TBL] [Abstract][Full Text] [Related]
12. DNA recognition by the EcoP15I and EcoPI modification methyltransferases. Ahmad I; Krishnamurthy V; Rao DN Gene; 1995 May; 157(1-2):143-7. PubMed ID: 7607479 [TBL] [Abstract][Full Text] [Related]
13. Functional analysis of amino acid residues at the dimerisation interface of KpnI DNA methyltransferase. Bheemanaik S; Bujnicki JM; Nagaraja V; Rao DN Biol Chem; 2006 May; 387(5):515-23. PubMed ID: 16740122 [TBL] [Abstract][Full Text] [Related]
14. The conserved aspartate in motif III of b family AdoMet-dependent DNA methyltransferase is important for methylation. Gopinath A; Kulkarni M; Ahmed I; Chouhan OP; Saikrishnan K J Biosci; 2020; 45():. PubMed ID: 31965988 [TBL] [Abstract][Full Text] [Related]
15. A mutational analysis of the two motifs common to adenine methyltransferases. Willcock DF; Dryden DT; Murray NE EMBO J; 1994 Aug; 13(16):3902-8. PubMed ID: 8070417 [TBL] [Abstract][Full Text] [Related]
16. Mutational analysis of two putative catalytic motifs of the type IV restriction endonuclease Eco57I. Rimseliene R; Janulaitis A J Biol Chem; 2001 Mar; 276(13):10492-7. PubMed ID: 11124947 [TBL] [Abstract][Full Text] [Related]
17. Structure of RsrI methyltransferase, a member of the N6-adenine beta class of DNA methyltransferases. Scavetta RD; Thomas CB; Walsh MA; Szegedi S; Joachimiak A; Gumport RI; Churchill ME Nucleic Acids Res; 2000 Oct; 28(20):3950-61. PubMed ID: 11024175 [TBL] [Abstract][Full Text] [Related]
18. Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog. Goedecke K; Pignot M; Goody RS; Scheidig AJ; Weinhold E Nat Struct Biol; 2001 Feb; 8(2):121-5. PubMed ID: 11175899 [TBL] [Abstract][Full Text] [Related]
19. Overexpression and affinity chromatography purification of the Type III restriction endonuclease EcoP15I for use in transcriptome analysis. Möncke-Buchner E; Mackeldanz P; Krüger DH; Reuter M J Biotechnol; 2004 Oct; 114(1-2):99-106. PubMed ID: 15464603 [TBL] [Abstract][Full Text] [Related]
20. Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase. Liebert K; Hermann A; Schlickenrieder M; Jeltsch A J Mol Biol; 2004 Aug; 341(2):443-54. PubMed ID: 15276835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]