These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Experimental investigation of accommodation in eyes fit with multifocal contact lenses using a clinical auto-refractor. Altoaimi BH; Kollbaum P; Meyer D; Bradley A Ophthalmic Physiol Opt; 2018 Mar; 38(2):152-163. PubMed ID: 29315718 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of a clinical aberrometer for lower-order accuracy and repeatability, higher-order repeatability, and instrument myopia. Salmon TO; van de Pol C Optometry; 2005 Aug; 76(8):461-72. PubMed ID: 16150413 [TBL] [Abstract][Full Text] [Related]
8. Relationship between refractive error and monochromatic aberrations of the eye. Cheng X; Bradley A; Hong X; Thibos LN Optom Vis Sci; 2003 Jan; 80(1):43-9. PubMed ID: 12553543 [TBL] [Abstract][Full Text] [Related]
9. Aberrations of the human eye in visible and near infrared illumination. Llorente L; Diaz-Santana L; Lara-Saucedo D; Marcos S Optom Vis Sci; 2003 Jan; 80(1):26-35. PubMed ID: 12553541 [TBL] [Abstract][Full Text] [Related]
10. Reproducibility of wavefront measurements using the LADARWave aberrometer. Lewis CD; Krueger RR J Refract Surg; 2006 Nov; 22(9):S973-9. PubMed ID: 17124900 [TBL] [Abstract][Full Text] [Related]
11. Comparison of wavefront aberrations in rabbit and human eyes. Chen L; Huang LC; Gray B; Chernyak DA Clin Exp Optom; 2014 Nov; 97(6):534-9. PubMed ID: 25069625 [TBL] [Abstract][Full Text] [Related]
12. Higher-order aberrations in myopic eyes. Karimian F; Feizi S; Doozande A J Ophthalmic Vis Res; 2010 Jan; 5(1):3-9. PubMed ID: 22737320 [TBL] [Abstract][Full Text] [Related]
13. Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view. Wei X; Thibos L Opt Express; 2010 Jan; 18(2):1134-43. PubMed ID: 20173936 [TBL] [Abstract][Full Text] [Related]
14. Validation of an off-eye contact lens Shack-Hartmann wavefront aberrometer. Kollbaum P; Jansen M; Thibos L; Bradley A Optom Vis Sci; 2008 Sep; 85(9):E817-28. PubMed ID: 18772713 [TBL] [Abstract][Full Text] [Related]
15. Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing. Zhou F; Hong X; Miller DT; Thibos LN; Bradley A J Opt Soc Am A Opt Image Sci Vis; 2004 May; 21(5):683-96. PubMed ID: 15139420 [TBL] [Abstract][Full Text] [Related]
16. Higher-order aberrations in eyes with irregular corneas after laser refractive surgery. McCormick GJ; Porter J; Cox IG; MacRae S Ophthalmology; 2005 Oct; 112(10):1699-709. PubMed ID: 16095700 [TBL] [Abstract][Full Text] [Related]
17. Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer. Salmon TO; West RW; Gasser W; Kenmore T Optom Vis Sci; 2003 Jan; 80(1):6-14. PubMed ID: 12553539 [TBL] [Abstract][Full Text] [Related]
18. Measuring ocular aberrations and image quality in peripheral vision with a clinical wavefront aberrometer. Shen J; Thibos LN Clin Exp Optom; 2009 May; 92(3):212-22. PubMed ID: 19462503 [TBL] [Abstract][Full Text] [Related]
19. Comparison of higher order aberrations measured by NIDEK OPD-Scan dynamic skiascopy and Zeiss WASCA Hartmann-Shack aberrometers. Cerviño A; Hosking SL; Montés-Micó R J Refract Surg; 2008 Oct; 24(8):790-6. PubMed ID: 18856232 [TBL] [Abstract][Full Text] [Related]
20. Higher order aberrations in normal eyes measured with three different aberrometers. Burakgazi AZ; Tinio B; Bababyan A; Niksarli KK; Asbell P J Refract Surg; 2006 Nov; 22(9):898-903. PubMed ID: 17124885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]