These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12918358)

  • 21. Microbial ecology. The dark and mushy side of a frozen continent.
    Inman M
    Science; 2007 Jul; 317(5834):35-6. PubMed ID: 17615316
    [No Abstract]   [Full Text] [Related]  

  • 22. Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia.
    Wagner D; Kobabe S; Liebner S
    Can J Microbiol; 2009 Jan; 55(1):73-83. PubMed ID: 19190703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds.
    Negandhi K; Laurion I; Lovejoy C
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27288196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Halo- and psychrotolerant Geomyces fungi from arctic cryopegs and marine deposits].
    Kochkina GA; Ivanushkina NE; Akimov VN; Gilichinskiĭ DA; Ozerskaia SM
    Mikrobiologiia; 2007; 76(1):39-47. PubMed ID: 17410873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A physical and chemical characterization of Martian permafrost as a possible habitat for viable microorganisms.
    Ostroumov V
    Adv Space Res; 1995 Mar; 15(3):229-36. PubMed ID: 11539230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [An electron microscopic study of the ultrastructure of microbial cells in extreme biotopes in situ].
    Dmitriev VV; Suzina NE; Barinova ES; Duda VI; Boronin AM
    Mikrobiologiia; 2004; 73(6):832-40. PubMed ID: 15688943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Electron microscopic detection and in situ characterization of bacterial nanoforms in extreme biotopes].
    Dmitriev VV; Suzina NE; Rusakova TG; Petrov PIu; Oleĭhikov RR; Esikova TZ; Kholodenko VP; Duda VI; Boronin AM
    Mikrobiologiia; 2008; 77(1):46-54. PubMed ID: 18365721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryoprotective properties of water in the Earth cryolithosphere and its role in exobiology.
    Gilichinsky DA; Soina VS; Petrova MA
    Orig Life Evol Biosph; 1993 Feb; 23(1):65-75. PubMed ID: 11536527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-locus real-time PCR for quantitation of bacteria in the environment reveals Exiguobacterium to be prevalent in permafrost.
    Rodrigues DF; Tiedje JM
    FEMS Microbiol Ecol; 2007 Feb; 59(2):489-99. PubMed ID: 17156079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial life in permafrost.
    Rivkina E; Laurinavichius K; McGrath J; Tiedje J; Shcherbakova V; Gilichinsky D
    Adv Space Res; 2004; 33(8):1215-21. PubMed ID: 15806703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intact DNA in ancient permafrost.
    Lewis K; Epstein S; Godoy VG; Hong SH
    Trends Microbiol; 2008 Mar; 16(3):92-4. PubMed ID: 18291656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aspartic acid racemization and age-depth relationships for organic carbon in Siberian permafrost.
    Brinton KL; Tsapin AI; Gilichinsky D; McDonald GD
    Astrobiology; 2002; 2(1):77-82. PubMed ID: 12449856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fractionation of organic C, nutrients, metals and bacteria in peat porewater and ice after freezing and thawing.
    Morgalev SY; Lim AG; Morgaleva TG; Morgalev YN; Manasypov RM; Kuzmina D; Shirokova LS; Orgogozo L; Loiko SV; Pokrovsky OS
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):823-836. PubMed ID: 35904738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sulphate reducing activity detected in soil samples from Antarctica, Ecology Glacier Forefield, King George Island.
    Wolicka D; Zdanowski MK; Żmuda-Baranowska MJ; Poszytek A; Grzesiak J
    Pol J Microbiol; 2014; 63(4):443-50. PubMed ID: 25804064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints.
    Ganzert L; Jurgens G; Münster U; Wagner D
    FEMS Microbiol Ecol; 2007 Feb; 59(2):476-88. PubMed ID: 16978241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Thermophilic prokaryotes from deep subterranean habitats].
    Slobodkin AI; Slobodkina GB
    Mikrobiologiia; 2014; 83(3):255-70. PubMed ID: 25844436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beringian paleoecology inferred from permafrost-preserved fungal DNA.
    Lydolph MC; Jacobsen J; Arctander P; Gilbert MT; Gilichinsky DA; Hansen AJ; Willerslev E; Lange L
    Appl Environ Microbiol; 2005 Feb; 71(2):1012-7. PubMed ID: 15691960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability.
    Jørgensen T; Haile J; Möller P; Andreev A; Boessenkool S; Rasmussen M; Kienast F; Coissac E; Taberlet P; Brochmann C; Bigelow NH; Andersen K; Orlando L; Gilbert MT; Willerslev E
    Mol Ecol; 2012 Apr; 21(8):1989-2003. PubMed ID: 22590727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Technological challenges to understanding the microbial ecology of deep subsurface ecosystems.
    Amils R
    Environ Microbiol Rep; 2015 Feb; 7(1):9-10. PubMed ID: 25721590
    [No Abstract]   [Full Text] [Related]  

  • 40. Dissecting microbial employment.
    Dinsdale EA; Rohwer F
    Nat Biotechnol; 2008 Sep; 26(9):997-8. PubMed ID: 18779810
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.