BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 12918593)

  • 1. Functions for detecting malposition of transcutaneous energy transmission coils.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Mochizuki S; Ishimaru M; Takiura K; Baba A; Toyama T; Imachi K
    ASAIO J; 2003; 49(4):469-74. PubMed ID: 12918593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; Bélanger G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transcutaneous energy transmission system for artificial heart adapting to changing impedance.
    Fu Y; Hu L; Ruan X; Fu X
    Artif Organs; 2015 Apr; 39(4):378-87. PubMed ID: 25349072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary study of a new type of energy transmission system for artificial hearts.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Ono T; Kouno A; Ishimaru M; Mochizuki S; Takiura K; Baba A; Toyama T; Imachi K
    J Artif Organs; 2003; 6(1):14-9. PubMed ID: 14598119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new transcutaneous energy transmission system with hybrid energy coils for driving an implantable biventricular assist device.
    Okamoto E; Yamamoto Y; Akasaka Y; Motomura T; Mitamura Y; Nosé Y
    Artif Organs; 2009 Aug; 33(8):622-6. PubMed ID: 19769776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transmission across intact skin for powering artificial internal organs.
    Sherman C; Clay W; Dasse K; Daly B
    Trans Am Soc Artif Intern Organs; 1981; 27():137-41. PubMed ID: 7331067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research for transcutaneous energy transfer based on PCB coreless planar circular spiral inductor coils].
    Wu B; Huang H; Feng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):749-52. PubMed ID: 20842838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart.
    Ahn JM; Kang DW; Kim HC; Min BG
    ASAIO J; 1993; 39(3):M208-12. PubMed ID: 8268530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Component engineering for an implantable system.
    Wang Q; Yambe T; Shiraishi Y; Esashi M; Haga Y; Yoshizawa M; Sato F; Matsuki H; Imachi K; Abe Y; Sasada H; Nitta S
    Artif Organs; 2004 Oct; 28(10):869-73. PubMed ID: 15384991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of unifying transcutaneous transformer for transmission of energy and information.
    Tamura N; Yamamoto T; Aoki H; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2009; 12(2):138-40. PubMed ID: 19536632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.
    Yamamoto T; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2008; 11(4):238-40. PubMed ID: 19184291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental analysis and development of the current and voltage control method by changing the driving frequency for the transcutaneous energy transmission system.
    Miura H; Yamada A; Shiraishi Y; Yambe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1319-22. PubMed ID: 26736511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of integrated electronics unit for drive and control of undulation pump-left ventricular assist device.
    Okamoto E; Makino T; Inoue Y; Tanaka S; Yasuda T; Nakamura M; Saito I; Abe Y; Chinzei T; Isoyama T; Mochiizuki S; Imachi K; Mitamura Y
    Artif Organs; 2006 May; 30(5):403-5. PubMed ID: 16683960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo performance of a transcutaneous energy transmission system with the Penn State motor driven ventricular assist device.
    Weiss WJ; Rosenberg G; Snyder AJ; Pae WE; Richenbacher WE; Pierce WS
    ASAIO Trans; 1989; 35(3):284-8. PubMed ID: 2597465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple remote-controlled power switch for internalized bioelectronic instrumentation.
    Varosi SM; Brigmon RL; Besch EL
    IEEE Trans Biomed Eng; 1989 Aug; 36(8):858-60. PubMed ID: 2759645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel low temperature transcutaneous energy transfer system suitable for high power implantable medical devices: performance and validation in sheep.
    Dissanayake TD; Budgett DM; Hu P; Bennet L; Pyner S; Booth L; Amirapu S; Wu Y; Malpas SC
    Artif Organs; 2010 May; 34(5):E160-7. PubMed ID: 20633146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on an energy supply method for a transcutaneous energy transmission system.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Ono T; Kouno A; Ishimaru M; Takiura K; Baba A; Toyama T; Imachi K
    Artif Organs; 2003 Jan; 27(1):68-72. PubMed ID: 12534715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of metals on a transcutaneous energy transmission system.
    Geselowitz DB; Hoang QT; Gaumond RP
    IEEE Trans Biomed Eng; 1992 Sep; 39(9):928-34. PubMed ID: 1473821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability.
    Wang JX; Smith JR; Bonde P
    Ann Thorac Surg; 2014 Apr; 97(4):1467-74. PubMed ID: 24530103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thoratec transcutaneous energy transformer system: a review and update.
    Rintoul TC; Dolgin A
    ASAIO J; 2004; 50(4):397-400. PubMed ID: 15307556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.