BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 12918593)

  • 21. Adaptive transcutaneous power delivery for an artificial anal sphincter system.
    Zan P; Yan G; Liu H; Luo N; Zhao Y
    J Med Eng Technol; 2009; 33(2):136-41. PubMed ID: 19085203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of a wireless power transmission system for an active capsule endoscope.
    Xin W; Yan G; Wang W
    Int J Med Robot; 2010 Mar; 6(1):113-22. PubMed ID: 20112281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Safety considerations for wireless delivery of continuous power to implanted medical devices.
    Lucke L; Bluvshtein V
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():286-9. PubMed ID: 25569953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Power flow control based solely on slow feedback loop for heart pump applications.
    Wang B; Hu AP; Budgett D
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):279-86. PubMed ID: 23853149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detecting Malposition of Coil Couple for Transcutaneous Energy Transmission.
    Hu L; Fu Y; Ruan X; Xie H; Fu X
    ASAIO J; 2016; 62(1):56-62. PubMed ID: 26461239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Power transmission for gastrointestinal microsystems using inductive coupling.
    Guanying M; Guozheng Y; Xiu H
    Physiol Meas; 2007 Mar; 28(3):N9-18. PubMed ID: 17322587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-layer coils for efficient Transcutaneous Power Transfer.
    Artan NS; Li X; Patel R; Ning C; Ludvig N; Chao HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3031-4. PubMed ID: 22254978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A small portable proton exchange membrane fuel cell and hydrogen generator for medical applications.
    Adlhart OJ; Rohonyi P; Modroukas D; Driller J
    ASAIO J; 1997; 43(3):214-9. PubMed ID: 9152494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal Design of Litz Wire Coils With Sandwich Structure Wirelessly Powering an Artificial Anal Sphincter System.
    Ke L; Yan G; Yan S; Wang Z; Li X
    Artif Organs; 2015 Jul; 39(7):615-26. PubMed ID: 25808086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An implantable power source for an artificial heart or left ventricular assist device.
    Spitzer D
    Trans Am Soc Artif Intern Organs; 1985; 31():193-5. PubMed ID: 3837443
    [No Abstract]   [Full Text] [Related]  

  • 31. Fundamental study of an electric power transmission system for implanted medical devices using magnetic and ultrasonic energy.
    Suzuki SN; Katane T; Saito O
    J Artif Organs; 2003; 6(2):145-8. PubMed ID: 14598116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Downsizing of coreless coils for transcutaneous energy transmission in implantable devices - improvement of coupling factor and efficiency between coils.
    Seshimo T; Yamamoto T; Koshiji K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1871-4. PubMed ID: 24110076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcutaneous energy transfer with voltage regulation for rotary blood pumps.
    Mussivand T; Holmes KS; Hum A; Keon WJ
    Artif Organs; 1996 Jun; 20(6):621-4. PubMed ID: 8817967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Totally implantable total artificial heart and ventricular assist device with multipurpose miniature electromechanical energy system.
    Takatani S; Orime Y; Tasai K; Ohara Y; Naito K; Mizuguchi K; Makinouchi K; Damm G; Glueck J; Ling J
    Artif Organs; 1994 Jan; 18(1):80-92. PubMed ID: 8141662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The transcutaneous charger for implanted nerve stimulation device.
    Niu C; Hao H; Li L; Ma B; Wu M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4941-4. PubMed ID: 17946663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A self-oscillating detuning-insensitive class-E transmitter for implantable microsystems.
    Ziaie B; Rose SC; Nardin MD; Najafi K
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):397-400. PubMed ID: 11327509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic algorithm optimization of transcutaneous energy transmission systems for implantable ventricular assist devices.
    Byron K; Bluvshtein V; Lucke L
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():659-62. PubMed ID: 24109773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled transcutaneous powering of a chronically implanted telemetry device.
    De Vel OY
    Biotelem Patient Monit; 1979; 6(4):176-85. PubMed ID: 526571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Power units of implanted artificial heart and assisted circulation system].
    Kiselev IuM; Kremnev VA; Sadov VV; Spiridonov VA
    Med Tekh; 1976; (4):50-6. PubMed ID: 1025440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Primary side control of load voltage for transcutaneous energy transmission.
    Fu Y; Hu L; Ruan X; Fu X
    J Artif Organs; 2016 Mar; 19(1):14-20. PubMed ID: 26432434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.