These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 12918593)

  • 41. A solar cell system for extension of battery run time in a moving actuator total artificial heart.
    Ahn JM; Kim WE; Choi SW; Min BG; Kim WG
    ASAIO J; 1997; 43(5):M673-6. PubMed ID: 9360131
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The re-design at the transformer portion of transcutaneous energy transmission system for all implantable devices.
    Watada M; Saisho R; Kim YJ; Ohuchi K; Takatani S; Um YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1035-8. PubMed ID: 18002137
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermal evaluation of a hermetic transcutaneous energy transfer system to power mechanical circulatory support devices in destination therapy.
    Au SLC; McCormick D; Lever N; Budgett D
    Artif Organs; 2020 Sep; 44(9):955-967. PubMed ID: 32133654
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrical power to run ventricular assist devices using the Free-range Resonant Electrical Energy Delivery system.
    Waters BH; Park J; Bouwmeester JC; Valdovinos J; Geirsson A; Sample AP; Smith JR; Bonde P
    J Heart Lung Transplant; 2018 Dec; 37(12):1467-1474. PubMed ID: 30228086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Progress in the design of a centrifugal cardiac assist pump with trans-cutaneous energy transmission by magnetic coupling.
    Dorman F; Bernstein EF; Blackshear PL; Sovilj R; Scott DR
    Trans Am Soc Artif Intern Organs; 1969; 15():441-8. PubMed ID: 5791424
    [No Abstract]   [Full Text] [Related]  

  • 46. Ten-year NEDO BVAD development program: moving forward to the clinical arena.
    Motomura T; Okubo H; Oda T; Ogawa D; Okahisa T; Igo S; Shinohara T; Yamamoto Y; Noguchi C; Ishizuka T; Okamoto E; Nosé Y
    ASAIO J; 2006; 52(4):378-85. PubMed ID: 16883116
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of specific absorption rate and current density in biological tissues surrounding energy transmission transformer for an artificial heart: using magnetic resonance imaging-based human body model.
    Higaki N; Shiba K
    Artif Organs; 2010 Jan; 34(1):E1-9. PubMed ID: 20420594
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Components of an implanted artificial heart and the medico-technical requirements].
    Egorov TL; Kiselev IuM; Kremnev VA; Sadov VV; Spiridonov VA
    Med Tekh; 1976; (4):6-10. PubMed ID: 1025442
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power.
    Waters BH; Smith JR; Bonde P
    ASAIO J; 2014; 60(1):31-7. PubMed ID: 24299972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcutaneous Pulsed RF Energy Transfer Mitigates Tissue Heating in High Power Demand Implanted Device Applications: In Vivo and In Silico Models Results.
    Karim ML; Bosnjak AM; McLaughlin J; Crawford P; McEneaney D; Escalona OJ
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298125
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Current status of the total artificial heart.
    Gray NA; Selzman CH
    Am Heart J; 2006 Jul; 152(1):4-10. PubMed ID: 16824826
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Heartmate II: design and development of a fully sealed axial flow left ventricular assist system.
    Burke DJ; Burke E; Parsaie F; Poirier V; Butler K; Thomas D; Taylor L; Maher T
    Artif Organs; 2001 May; 25(5):380-5. PubMed ID: 11403668
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Driver electronics design and control for a total artificial heart linear motor.
    Unthan K; Cuenca-Navalon E; Pelletier B; Finocchiaro T; Steinseifer U
    Med Biol Eng Comput; 2018 Aug; 56(8):1487-1498. PubMed ID: 29374348
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A transcutaneous power transfer interface based on a multicoil inductive link.
    Mirbozorgi SA; Gosselin B; Sawan M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1659-62. PubMed ID: 23366226
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo evaluations of a transcutaneous energy transmission (TET) system.
    Sherman C; Daly BD; Clay W; Dasse K; Handrahan J; Haudenschild C
    Trans Am Soc Artif Intern Organs; 1984; 30():143-7. PubMed ID: 6398544
    [No Abstract]   [Full Text] [Related]  

  • 56. [Research on wireless power transmission for gastrointestinal microsystems based on inductive coupling].
    Ma G; Yan G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):61-4, 87. PubMed ID: 18435258
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A transcutaneous energy and information transfer system for implanted medical devices.
    Mussivand T; Hum A; Diguer M; Holmes KS; Vecchio G; Masters RG; Hendry PJ; Keon WJ
    ASAIO J; 1995; 41(3):M253-8. PubMed ID: 8573800
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcutaneous transmission of digital data and energy in a cochlear prosthesis system.
    Zierhofer MC; Hochmair ES
    Int J Artif Organs; 1992 Jun; 15(6):379-82. PubMed ID: 1639532
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Longitudinal change in quality of life and impact on survival after left ventricular assist device implantation.
    Grady KL; Meyer PM; Dressler D; Mattea A; Chillcott S; Loo A; White-Williams C; Todd B; Ormaza S; Kaan A; Costanzo MR; Piccione W
    Ann Thorac Surg; 2004 Apr; 77(4):1321-7. PubMed ID: 15063260
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The development of core-type Transcutaneous Energy Transmission System for artificial heart.
    Watada M; Iwawaki K; Tamada T; Ouchi K; Takatani S; Um YS
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():3849-52. PubMed ID: 17281070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.