These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12918982)

  • 1. Micropatterned polymeric gratings as chemoresponsive volatile organic compound sensors: implications for analyte detection and identification via diffraction-based sensor arrays.
    Bailey RC; Hupp JT
    Anal Chem; 2003 May; 75(10):2392-8. PubMed ID: 12918982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric sensor arrays for volatile organic compounds.
    Janzen MC; Ponder JB; Bailey DP; Ingison CK; Suslick KS
    Anal Chem; 2006 Jun; 78(11):3591-600. PubMed ID: 16737212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis.
    Park J; Groves WA; Zellers ET
    Anal Chem; 1999 Sep; 71(17):3877-86. PubMed ID: 10489533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecularly imprinted polymer diffraction grating as label-free optical bio(mimetic)sensor.
    Barrios CA; Zhenhe C; Navarro-Villoslada F; López-Romero D; Moreno-Bondi MC
    Biosens Bioelectron; 2011 Jan; 26(5):2801-4. PubMed ID: 21131191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures.
    Si P; Mortensen J; Komolov A; Denborg J; Møller PJ
    Anal Chim Acta; 2007 Aug; 597(2):223-30. PubMed ID: 17683733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a gas-sensor array for detecting volatile organic compounds (VOC) in chemically induced cells.
    Pasini P; Powar N; Gutierrez-Osuna R; Daunert S; Roda A
    Anal Bioanal Chem; 2004 Jan; 378(1):76-83. PubMed ID: 14615863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile organic compound detection using nanostructured copolymers.
    Li B; Sauvé G; Iovu MC; Jeffries-El M; Zhang R; Cooper J; Santhanam S; Schultz L; Revelli JC; Kusne AG; Kowalewski T; Snyder JL; Weiss LE; Fedder GK; McCullough RD; Lambeth DN
    Nano Lett; 2006 Aug; 6(8):1598-602. PubMed ID: 16895342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile hyphenation of gas chromatography and a microcantilever array sensor for enhanced selectivity.
    Chapman PJ; Vogt F; Dutta P; Datskos PG; Devault GL; Sepaniak MJ
    Anal Chem; 2007 Jan; 79(1):364-70. PubMed ID: 17194162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Detection of Complex Mixtures using a Single Chemical Sensor: Analysis of Response Transients using Multi-Stage Estimation.
    Sothivelr K; Bender F; Josse F; Yaz EE; Ricco AJ
    ACS Sens; 2019 Jun; 4(6):1682-1690. PubMed ID: 31117366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-phase chemical sensing using lateral mode resonant cantilevers.
    Beardslee LA; Demirci KS; Luzinova Y; Mizaikoff B; Heinrich SM; Josse F; Brand O
    Anal Chem; 2010 Sep; 82(18):7542-9. PubMed ID: 20715842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review.
    Länge K
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic wave-based sensors using mode conversion in periodic gratings.
    Bender F; Dahint R; Josse F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1497-503. PubMed ID: 18244346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optoelectronic nose: "seeing" smells by means of colorimetric sensor arrays.
    Suslick KS
    MRS Bull; 2004 Oct; 29(10):720-5. PubMed ID: 15991401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Love Wave Sensors with Silver Modified Polypyrrole Nanoparticles for VOCs Monitoring.
    Šetka M; Bahos FA; Matatagui D; Gràcia I; Figueras E; Drbohlavová J; Vallejos S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a sensor system for determining the kind and quantity of two component VOC mixtures in air after the use of solvents.
    Szczurek A; Maciejewska M; Flisowska-Wiercik B; Bodzoj L
    J Environ Monit; 2009 Nov; 11(11):1942-51. PubMed ID: 19890551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface acoustic wave (SAW) microsensor array for measuring VOCs in drinking water.
    Groves WA; Grey AB; O'Shaughnessy PT
    J Environ Monit; 2006 Sep; 8(9):932-41. PubMed ID: 16951753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of multitransducer arrays for the determination of organic vapor mixtures.
    Jin C; Kurzawski P; Hierlemann A; Zellers ET
    Anal Chem; 2008 Jan; 80(1):227-36. PubMed ID: 18047297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays.
    Zellers ET; Batterman SA; Han M; Patrash SJ
    Anal Chem; 1995 Mar; 67(6):1092-106. PubMed ID: 7717524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optochemical sensor for determining ozone based on novel soluble indigo dyes immobilised in a highly permeable polymeric film.
    Alexy M; Voss G; Heinze J
    Anal Bioanal Chem; 2005 Aug; 382(7):1628-41. PubMed ID: 15986207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of ring resonators for chemical vapor sensor development.
    Sun Y; Fan X
    Opt Express; 2008 Jul; 16(14):10254-68. PubMed ID: 18607434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.