BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 12919866)

  • 41. Connective tissue growth factor causes persistent proalpha2(I) collagen gene expression induced by transforming growth factor-beta in a mouse fibrosis model.
    Chujo S; Shirasaki F; Kawara S; Inagaki Y; Kinbara T; Inaoki M; Takigawa M; Takehara K
    J Cell Physiol; 2005 May; 203(2):447-56. PubMed ID: 15605379
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extracellular proteoglycans modify TGF-beta bio-availability attenuating its signaling during skeletal muscle differentiation.
    Droguett R; Cabello-Verrugio C; Riquelme C; Brandan E
    Matrix Biol; 2006 Aug; 25(6):332-41. PubMed ID: 16766169
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regeneration versus fibrosis in skeletal muscle.
    Moyer AL; Wagner KR
    Curr Opin Rheumatol; 2011 Nov; 23(6):568-73. PubMed ID: 21934499
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Establishment of penile fibrosis model in a rat using mouse NIH 3T3 fibroblasts expressing transforming growth factor beta1.
    Ryu JK; Song SU; Han JY; Chu YC; Lee M; Kim JS; Kim SJ; Suh JK
    Biol Reprod; 2005 Apr; 72(4):916-21. PubMed ID: 15601922
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Loss of peroxisome proliferator-activated receptor gamma in mouse fibroblasts results in increased susceptibility to bleomycin-induced skin fibrosis.
    Kapoor M; McCann M; Liu S; Huh K; Denton CP; Abraham DJ; Leask A
    Arthritis Rheum; 2009 Sep; 60(9):2822-9. PubMed ID: 19714649
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative evaluation of IGF-I gene transfer and IGF-I protein administration for enhancing skeletal muscle regeneration after injury.
    Schertzer JD; Lynch GS
    Gene Ther; 2006 Dec; 13(23):1657-64. PubMed ID: 16871234
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of urokinase-type plasminogen activator (uPA) and transforming growth factor beta 1 (TGFbeta1) in muscle regeneration.
    Philippou A; Maridaki M; Koutsilieris M
    In Vivo; 2008; 22(6):735-50. PubMed ID: 19181000
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Induction of the myofibroblastic phenotype in human gingival fibroblasts by transforming growth factor-beta1: role of RhoA-ROCK and c-Jun N-terminal kinase signaling pathways.
    Smith PC; Cáceres M; Martinez J
    J Periodontal Res; 2006 Oct; 41(5):418-25. PubMed ID: 16953819
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interferon-gamma-induced inhibition of wound healing in vivo and in vitro.
    Laato M; Heino J; Gerdin B; Kähäri VM; Niinikoski J
    Ann Chir Gynaecol Suppl; 2001; (215):19-23. PubMed ID: 12016743
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Losartan improves adipose tissue-derived stem cell niche by inhibiting transforming growth factor-β and fibrosis in skeletal muscle injury.
    Park JK; Ki MR; Lee EM; Kim AY; You SY; Han SY; Lee EJ; Hong IH; Kwon SH; Kim SJ; Rando TA; Jeong KS
    Cell Transplant; 2012; 21(11):2407-24. PubMed ID: 22507443
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibited skeletal muscle healing in cyclooxygenase-2 gene-deficient mice: the role of PGE2 and PGF2alpha.
    Shen W; Prisk V; Li Y; Foster W; Huard J
    J Appl Physiol (1985); 2006 Oct; 101(4):1215-21. PubMed ID: 16778000
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cutting-edge muscle recovery: using antifibrosis agents to improve healing.
    Li Y; Fu FH; Huard J
    Phys Sportsmed; 2005 May; 33(5):44-50. PubMed ID: 20086363
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Healing of muscle trauma after intramuscular injection of antibiotics in sheep: correlations between clinical, macroscopic and microscopic scores.
    Mikaelian I; Poul JM; Cabanié P
    Vet Res; 1996; 27(2):97-106. PubMed ID: 8721289
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Combined Use of Losartan and Muscle-Derived Stem Cells Significantly Improves the Functional Recovery of Muscle in a Young Mouse Model of Contusion Injuries.
    Kobayashi M; Ota S; Terada S; Kawakami Y; Otsuka T; Fu FH; Huard J
    Am J Sports Med; 2016 Dec; 44(12):3252-3261. PubMed ID: 27501834
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The impact of microanastomosis of the intramuscular nerve branch on the healing of a completely lacerated skeletal muscle: a histopathological analysis.
    Zheng L; Tan JA; Tan BL; Pereira BP; Lim AY; Lahiri A; Kumar VP
    Ann Acad Med Singap; 2004 Sep; 33(5 Suppl):S24-6. PubMed ID: 15651192
    [No Abstract]   [Full Text] [Related]  

  • 56. Combination therapy of human adipose-derived stem cells and basic fibroblast growth factor hydrogel in muscle regeneration.
    Hwang JH; Kim IG; Piao S; Jung AR; Lee JY; Park KD; Lee JY
    Biomaterials; 2013 Aug; 34(25):6037-45. PubMed ID: 23688603
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Losartan administration reduces fibrosis but hinders functional recovery after volumetric muscle loss injury.
    Garg K; Corona BT; Walters TJ
    J Appl Physiol (1985); 2014 Nov; 117(10):1120-31. PubMed ID: 25257876
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of transforming growth factor-β1 treatment on muscle regeneration and adipogenesis in glycerol-injured muscle.
    Mahdy MAA; Warita K; Hosaka YZ
    Anim Sci J; 2017 Nov; 88(11):1811-1819. PubMed ID: 28585769
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Muscle Resting and TGF-β Inhibitor Treatment Prevent Fatty Infiltration Following Skeletal Muscle Injury.
    Pagano AF; Arc-Chagnaud C; Brioche T; Chopard A; Py G
    Cell Physiol Biochem; 2019; 53(1):62-75. PubMed ID: 31184447
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of an ultrasonic blade facilitates muscle repair after incision injury.
    Usas A; Usaite D; Gao X; Huard J; Clymer JW; Malaviya P
    J Surg Res; 2011 May; 167(2):e177-84. PubMed ID: 21324491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.