These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 12920497)

  • 21. Microfluidic array platform for simultaneous lipid bilayer membrane formation.
    Zagnoni M; Sandison ME; Morgan H
    Biosens Bioelectron; 2009 Jan; 24(5):1235-40. PubMed ID: 18760585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unsaturated lipids protect the integral membrane peptide gramicidin A from singlet oxygen.
    Rokitskaya TI; Kotova EA; Agapov II; Moisenovich MM; Antonenko YN
    FEBS Lett; 2014 May; 588(9):1590-5. PubMed ID: 24613917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip.
    Hromada LP; Nablo BJ; Kasianowicz JJ; Gaitan MA; DeVoe DL
    Lab Chip; 2008 Apr; 8(4):602-8. PubMed ID: 18369516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined electrochemistry and surface-enhanced infrared absorption spectroscopy of gramicidin A incorporated into tethered bilayer lipid membranes.
    Kozuch J; Steinem C; Hildebrandt P; Millo D
    Angew Chem Int Ed Engl; 2012 Aug; 51(32):8114-7. PubMed ID: 22865570
    [No Abstract]   [Full Text] [Related]  

  • 25. Ubiquinone-10 in gold-immobilized lipid membrane structures acts as a sensor for acetylcholine and other tetraalkylammonium cations.
    Mårtensson C; Agmo Hernández V
    Bioelectrochemistry; 2012 Dec; 88():171-80. PubMed ID: 22542468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics.
    Rokitskaya TI; Antonenko YN; Kotova EA
    Biophys J; 1997 Aug; 73(2):850-4. PubMed ID: 9251801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Weak nonlinearity of current-voltage characteristics of gramicidin D channels. Experiment, theory and application to the study of transmembrane transmission of information.
    Passechnik VI; Hianik T
    Gen Physiol Biophys; 1998 Mar; 17(1):51-69. PubMed ID: 9675556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrating carbon nanotubes and lipid bilayer for biosensing.
    Huang Y; Palkar PV; Li LJ; Zhang H; Chen P
    Biosens Bioelectron; 2010 Mar; 25(7):1834-7. PubMed ID: 20047826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of the hydrophilic spacer length on the functionality of a mercury-supported tethered bilayer lipid membrane.
    Becucci L; Faragher RJ; Schwan A
    Bioelectrochemistry; 2015 Feb; 101():92-6. PubMed ID: 25180906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous optical and electrical recording of single gramicidin channels.
    Borisenko V; Lougheed T; Hesse J; Füreder-Kitzmüller E; Fertig N; Behrends JC; Woolley GA; Schütz GJ
    Biophys J; 2003 Jan; 84(1):612-22. PubMed ID: 12524314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane surface-charge titration probed by gramicidin A channel conductance.
    Rostovtseva TK; Aguilella VM; Vodyanoy I; Bezrukov SM; Parsegian VA
    Biophys J; 1998 Oct; 75(4):1783-92. PubMed ID: 9746520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical biosensor for estrogenic substance using lipid bilayers modified by Au nanoparticles.
    Xia W; Li Y; Wan Y; Chen T; Wei J; Lin Y; Xu S
    Biosens Bioelectron; 2010 Jun; 25(10):2253-8. PubMed ID: 20353888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogel stamping of arrays of supported lipid bilayers with various lipid compositions for the screening of drug-membrane and protein-membrane interactions.
    Majd S; Mayer M
    Angew Chem Int Ed Engl; 2005 Oct; 44(41):6697-700. PubMed ID: 16187388
    [No Abstract]   [Full Text] [Related]  

  • 34. Detection of single ion channel activity on a chip using tethered bilayer membranes.
    Andersson M; Keizer HM; Zhu C; Fine D; Dodabalapur A; Duran RS
    Langmuir; 2007 Mar; 23(6):2924-7. PubMed ID: 17286424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attenuation of proton currents by methanol in a dioxolane-linked gramicidin A channel in different lipid bilayers.
    Quigley EP; Emerick AJ; Crumrine DS; Cukierman S
    Biophys J; 1998 Dec; 75(6):2811-20. PubMed ID: 9826603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels.
    Phung T; Zhang Y; Dunlop J; Dalziel J
    Biosens Bioelectron; 2011 Mar; 26(7):3127-35. PubMed ID: 21211957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipid bilayer arrays: cyclically formed and measured.
    Lu B; Kocharyan G; Schmidt JJ
    Biotechnol J; 2014 Mar; 9(3):446-51. PubMed ID: 24730059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resonance-mode electrochemical impedance measurements of silicon dioxide supported lipid bilayer formation and ion channel mediated charge transport.
    Lundgren A; Hedlund J; Andersson O; Brändén M; Kunze A; Elwing H; Höök F
    Anal Chem; 2011 Oct; 83(20):7800-6. PubMed ID: 21877702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pore-forming compounds as signal transduction elements for highly sensitive biosensing.
    Sugawara M; Shoji A; Sakamoto M
    Anal Sci; 2014; 30(1):119-28. PubMed ID: 24420253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of highly insulating tethered bilayer lipid membrane using yeast cell membrane fractions for measuring ion channel activity.
    Jadhav SR; Sui D; Garavito RM; Worden RM
    J Colloid Interface Sci; 2008 Jun; 322(2):465-72. PubMed ID: 18387623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.