These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 12920595)

  • 1. Characterization of sterol uptake in leaf tissues of sugar beet.
    Rossard S; Bonmort J; Guinet F; Ponchet M; Roblin G
    Planta; 2003 Dec; 218(2):288-99. PubMed ID: 12920595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ergosterol triggers characteristic elicitation steps in Beta vulgaris leaf tissues.
    Rossard S; Roblin G; Atanassova R
    J Exp Bot; 2010 Jun; 61(6):1807-16. PubMed ID: 20304987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cutting on solute uptake by plasma membrane vesicles from sugar beet (Beta vulgaris L.) leaves.
    Sakr S; Lemoine R; Gaillard C; Delrot S
    Plant Physiol; 1993 Sep; 103(1):49-58. PubMed ID: 8208858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valine uptake in the tap root of sugar beet: a comparative analysis with sucrose uptake.
    Michonneau P; Roblin G; Bonmort J; Fleurat-Lessard P
    J Plant Physiol; 2004 Dec; 161(12):1299-314. PubMed ID: 15658801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sitosterol reduces messenger RNA and protein expression levels of Niemann-Pick C1-like 1 in FHs 74 Int cells.
    Jesch ED; Seo JM; Carr TP; Lee JY
    Nutr Res; 2009 Dec; 29(12):859-66. PubMed ID: 19963159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-Coupled Sucrose Transport in Plasmalemma Vesicles Isolated from Sugar Beet (Beta vulgaris L. cv Great Western) Leaves.
    Bush DR
    Plant Physiol; 1989 Apr; 89(4):1318-23. PubMed ID: 16666703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and substrate specificity of betaine/proline transporters suggest a novel choline transport mechanism in sugar beet.
    Yamada N; Sakakibara S; Tsutsumi K; Waditee R; Tanaka Y; Takabe T
    J Plant Physiol; 2011 Sep; 168(14):1609-16. PubMed ID: 21511362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of cholesterol biosynthesis by Delta22-unsaturated phytosterols via competitive inhibition of sterol Delta24-reductase in mammalian cells.
    Fernández C; Suárez Y; Ferruelo AJ; Gómez-Coronado D; Lasunción MA
    Biochem J; 2002 Aug; 366(Pt 1):109-19. PubMed ID: 12162789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of glucosinolate uptake by leaf protoplasts of Brassica napus.
    Chen S; Halkier BA
    J Biol Chem; 2000 Jul; 275(30):22955-60. PubMed ID: 10816580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.
    Singh S; Pal S; Shanker K; Chanotiya CS; Gupta MM; Dwivedi UN; Shasany AK
    Physiol Plant; 2014 Dec; 152(4):617-33. PubMed ID: 24749735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeltapH-Dependent Amino Acid Transport into Plasma Membrane Vesicles Isolated from Sugar Beet Leaves: I. Evidence for Carrier-Mediated, Electrogenic Flux through Multiple Transport Systems.
    Li ZC; Bush DR
    Plant Physiol; 1990 Sep; 94(1):268-77. PubMed ID: 16667696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stigmasterol reduces plasma cholesterol levels and inhibits hepatic synthesis and intestinal absorption in the rat.
    Batta AK; Xu G; Honda A; Miyazaki T; Salen G
    Metabolism; 2006 Mar; 55(3):292-9. PubMed ID: 16483871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica.
    Wiangnon K; Raksajit W; Incharoensakdi A
    FEMS Microbiol Lett; 2007 May; 270(1):139-45. PubMed ID: 17302934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton-Peptide Co-Transport in Broad Bean Leaf Tissues.
    Jamai A; Chollet JF; Delrot S
    Plant Physiol; 1994 Nov; 106(3):1023-1031. PubMed ID: 12232383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of leucine-leucine transport in leaf tissues.
    Jamaï A; Laloi M; Bourbouloux A; Valantin M; Delrot S
    J Exp Bot; 1996 Aug; 47 Spec No():1223-7. PubMed ID: 21245253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitors of the proton-sucrose symport.
    Bush DR
    Arch Biochem Biophys; 1993 Dec; 307(2):355-60. PubMed ID: 8274022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The replacement of cholesterol by phytosterols and the increase of total sterol content in model erythrocyte membranes.
    Hac-Wydro K
    Chem Phys Lipids; 2010 Sep; 163(7):689-97. PubMed ID: 20654600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implication of actin in the uptake of sucrose and valine in the tap root and leaf of sugar beet.
    Michonneau P; Fleurat-Lessard P; Cantereau A; Crépin A; Roblin G; Berjeaud JM
    Physiol Plant; 2021 May; 172(1):218-232. PubMed ID: 33421161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of Cholesterol Side Chain in the Membrane Stability of Human Erythrocytes.
    Yamaguchi T; Manaka C; Ogura A; Nagadome S
    Biol Pharm Bull; 2021; 44(6):888-893. PubMed ID: 34078822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sucrose-dependent H(+) transport in plasma-membrane vesicles isolated from sugarbeet leaves (Beta vulgaris L.) : Evidence in support of the H(+)-symport model for sucrose transport.
    Slone JH; Buckhout TJ
    Planta; 1991 Mar; 183(4):584-9. PubMed ID: 24193852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.