BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

717 related articles for article (PubMed ID: 12920885)

  • 1. [Phosphorus transfer between mixed poplar and black locust seedlings].
    He W; Jia L; Hao B; Wen X; Zhai M
    Ying Yong Sheng Tai Xue Bao; 2003 Apr; 14(4):481-6. PubMed ID: 12920885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in arbuscular mycorrhizal fungal attributes along a chronosequence of black locust (Robinia pseudoacacia) plantations can be attributed to the plantation-induced variation in soil properties.
    Sheng M; Chen X; Zhang X; Hamel C; Cui X; Chen J; Chen H; Tang M
    Sci Total Environ; 2017 Dec; 599-600():273-283. PubMed ID: 28477484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress.
    Khalvati MA; Hu Y; Mozafar A; Schmidhalter U
    Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.
    Liu B; Li H; Zhu B; Koide RT; Eissenstat DM; Guo D
    New Phytol; 2015 Oct; 208(1):125-36. PubMed ID: 25925733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.
    Zhang H; Liu Z; Chen H; Tang M
    PLoS One; 2016; 11(4):e0153378. PubMed ID: 27064570
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Huang L; Chen D; Zhang H; Song Y; Chen H; Tang M
    Front Microbiol; 2019; 10():2591. PubMed ID: 31781076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc.
    Chen BD; Li XL; Tao HQ; Christie P; Wong MH
    Chemosphere; 2003 Feb; 50(6):839-46. PubMed ID: 12688500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L.
    Liu Y; Zhu YG; Chen BD; Christie P; Li XL
    Mycorrhiza; 2005 May; 15(3):187-92. PubMed ID: 15309589
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Qin Y; Duan G; Zhao Z; Tian H; Solaiman ZM
    Mycorrhiza; 2018 Nov; 28(8):787-793. PubMed ID: 29951862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus-32 absorption and translocation to host plants by arbuscular mycorrhizal fungi at low root-zone temperature.
    Wang B; Funakoshi DM; Dalpé Y; Hamel C
    Mycorrhiza; 2002 Apr; 12(2):93-6. PubMed ID: 12035733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of strawberry to inoculation with arbuscular mycorrhizal fungi under very high soil phosphorus conditions.
    Stewart LI; Hamel C; Hogue R; Moutoglis P
    Mycorrhiza; 2005 Nov; 15(8):612-619. PubMed ID: 16059721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.).
    Chen BD; Liu Y; Shen H; Li XL; Christie P
    Mycorrhiza; 2004 Dec; 14(6):347-54. PubMed ID: 14661105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil.
    Karasawa T; Hodge A; Fitter AH
    Plant Cell Environ; 2012 Apr; 35(4):819-28. PubMed ID: 22070553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress.
    He F; Zhang H; Tang M
    Mycorrhiza; 2016 May; 26(4):311-23. PubMed ID: 26590998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress.
    Alarcón A; Davies FT; Egilla JN; Fox TC; Estrada-Luna AA; Ferrera-Cerrato R
    Rev Latinoam Microbiol; 2002; 44(1):31-7. PubMed ID: 17061513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer.
    Teste FP; Simard SW; Durall DM; Guy RD; Jones MD; Schoonmaker AL
    Ecology; 2009 Oct; 90(10):2808-22. PubMed ID: 19886489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of ectomycorrhizal and pathogenic fungi in soil along a vegetational change from Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia).
    Taniguchi T; Kataoka R; Tamai S; Yamanaka N; Futai K
    Mycorrhiza; 2009 Apr; 19(4):231-238. PubMed ID: 19015894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of ectomycorrhizal colonization of hybrid poplar on the remediation of diesel-contaminated soil.
    Gunderson JJ; Knight JD; Van Rees KC
    J Environ Qual; 2007; 36(4):927-34. PubMed ID: 17526871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of 233U and 33P uptake and translocation by the arbuscular mycorrhizal fungus Glomus intraradices in root organ culture conditions.
    Rufyikiri G; Declerck S; Thiry Y
    Mycorrhiza; 2004 Jul; 14(3):203-7. PubMed ID: 15197636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil.
    Zhu YG; Smith FA; Smith SE
    Mycorrhiza; 2003 Apr; 13(2):93-100. PubMed ID: 12682831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.