These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
716 related articles for article (PubMed ID: 12920885)
81. Rhizophagus irregularis MUCL 41833 can colonize and improve P uptake of Plantago lanceolata after exposure to ionizing gamma radiation in root organ culture. Kothamasi D; Wannijn J; van Hees M; Nauts R; van Gompel A; Vanhoudt N; Cranenbrouck S; Declerck S; Vandenhove H Mycorrhiza; 2016 Apr; 26(3):257-62. PubMed ID: 26467250 [TBL] [Abstract][Full Text] [Related]
82. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Cheng L; Chen W; Adams TS; Wei X; Li L; McCormack ML; DeForest JL; Koide RT; Eissenstat DM Ecology; 2016 Oct; 97(10):2815-2823. PubMed ID: 27859112 [TBL] [Abstract][Full Text] [Related]
83. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Gamalero E; Trotta A; Massa N; Copetta A; Martinotti MG; Berta G Mycorrhiza; 2004 Jul; 14(3):185-92. PubMed ID: 15197635 [TBL] [Abstract][Full Text] [Related]
84. Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Wu QS; Cao MQ; Zou YN; He XH Sci Rep; 2014 Jul; 4():5823. PubMed ID: 25059396 [TBL] [Abstract][Full Text] [Related]
85. Underground resource allocation between individual networks of mycorrhizal fungi. Mikkelsen BL; Rosendahl S; Jakobsen I New Phytol; 2008; 180(4):890-8. PubMed ID: 18801003 [TBL] [Abstract][Full Text] [Related]
86. Arbuscular mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi. Tiunov AV; Scheu S Oecologia; 2005 Feb; 142(4):636-42. PubMed ID: 15619097 [TBL] [Abstract][Full Text] [Related]
87. Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability. Sato T; Hachiya S; Inamura N; Ezawa T; Cheng W; Tawaraya K Mycorrhiza; 2019 Nov; 29(6):599-605. PubMed ID: 31745622 [TBL] [Abstract][Full Text] [Related]
88. A comparison of phosphorus and nitrogen transfer between plants of different phosphorus status. Eissenstat DM Oecologia; 1990 Mar; 82(3):342-347. PubMed ID: 28312709 [TBL] [Abstract][Full Text] [Related]
89. Rapid Transfer of Plant Photosynthates to Soil Bacteria via Ectomycorrhizal Hyphae and Its Interaction With Nitrogen Availability. Gorka S; Dietrich M; Mayerhofer W; Gabriel R; Wiesenbauer J; Martin V; Zheng Q; Imai B; Prommer J; Weidinger M; Schweiger P; Eichorst SA; Wagner M; Richter A; Schintlmeister A; Woebken D; Kaiser C Front Microbiol; 2019; 10():168. PubMed ID: 30863368 [TBL] [Abstract][Full Text] [Related]
90. Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. Vierheilig H J Plant Physiol; 2004 Mar; 161(3):339-41. PubMed ID: 15077632 [TBL] [Abstract][Full Text] [Related]
91. Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution. Xia Z; He Y; Yu L; Lv R; Korpelainen H; Li C New Phytol; 2020 Jan; 225(2):782-792. PubMed ID: 31487045 [TBL] [Abstract][Full Text] [Related]
92. Comparative physiological mechanisms of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects on leaves and roots of Zelkova serrata. Wang J; Zhai L; Ma J; Zhang J; Wang GG; Liu X; Zhang S; Song J; Wu Y Mycorrhiza; 2020 May; 30(2-3):341-355. PubMed ID: 32388674 [TBL] [Abstract][Full Text] [Related]
93. Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO Sanders IR; Streitwolf-Engel R; van der Heijden MG; Boller T; Wiemken A Oecologia; 1998 Dec; 117(4):496-503. PubMed ID: 28307674 [TBL] [Abstract][Full Text] [Related]
94. No significant transfer of the rare earth element samarium from spiked soil to alfalfa by Funneliformis mosseae. Hu R; Beguiristain T; De Junet A; Leyval C Mycorrhiza; 2020 Nov; 30(6):761-771. PubMed ID: 33105489 [TBL] [Abstract][Full Text] [Related]
95. The mycorrhizal-induced growth promotion and insect resistance reduction in Populus alba × P. berolinensis seedlings: a multi-omics study. Jiang D; Lin R; Tan M; Yan J; Yan S Tree Physiol; 2022 May; 42(5):1059-1069. PubMed ID: 35022794 [TBL] [Abstract][Full Text] [Related]
96. Extraradical mycelium of the arbuscular mycorrhizal fungus Glomus lamellosum can take up, accumulate and translocate radiocaesium under root-organ culture conditions. Declerck S; Dupré de Boulois H; Bivort C; Delvaux B Environ Microbiol; 2003 Jun; 5(6):510-6. PubMed ID: 12755718 [TBL] [Abstract][Full Text] [Related]
97. Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: patterns across large geographic distances. Powers JS; Treseder KK; Lerdau MT New Phytol; 2005 Mar; 165(3):913-21. PubMed ID: 15720702 [TBL] [Abstract][Full Text] [Related]
98. Benomyl inhibits phosphorus transport but not fungal alkaline phosphatase activity in a Glomus-cucumber symbiosis. Larsen J; Thingstrup I; Jakobsen I; Rosendahl S New Phytol; 1996 Jan; 132(1):127-133. PubMed ID: 33863061 [TBL] [Abstract][Full Text] [Related]
99. Simultaneously maximizing root/mycorrhizal growth and phosphorus uptake by cotton plants by optimizing water and phosphorus management. Mai W; Xue X; Feng G; Tian C BMC Plant Biol; 2018 Dec; 18(1):334. PubMed ID: 30518320 [TBL] [Abstract][Full Text] [Related]