These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
716 related articles for article (PubMed ID: 12920885)
101. New mutualistic fungal endophytes isolated from poplar roots display high metal tolerance. Lacercat-Didier L; Berthelot C; Foulon J; Errard A; Martino E; Chalot M; Blaudez D Mycorrhiza; 2016 Oct; 26(7):657-71. PubMed ID: 27113586 [TBL] [Abstract][Full Text] [Related]
102. Characterization of ectomycorrhizal fungal communities associated with tree species on an iron tailings deposit undergoing restoration. Zhu W; Ding C; Zhu K; Zhang W; Liang D; Wang X; Li A; Su X Environ Sci Pollut Res Int; 2022 Dec; 29(56):84396-84409. PubMed ID: 35780265 [TBL] [Abstract][Full Text] [Related]
103. Nitrogen and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus Paxillus involutus and its effect on host nutrition. Brandes B; Godbold DL; Kuhn AJ; Jentschke G New Phytol; 1998 Dec; 140(4):735-743. PubMed ID: 33862956 [TBL] [Abstract][Full Text] [Related]
104. The influence of arbuscular mycorrhizal colonization on soil-root hydraulic conductance in Agrostis stolonifera L. under two water regimes. Gonzalez-Dugo V Mycorrhiza; 2010 Aug; 20(6):365-73. PubMed ID: 20049617 [TBL] [Abstract][Full Text] [Related]
105. Mycorrhizal effectiveness in Citrus macrophylla at low phosphorus fertilization. Navarro JM; Morte A J Plant Physiol; 2019 Jan; 232():301-310. PubMed ID: 30551095 [TBL] [Abstract][Full Text] [Related]
106. Does ectomycorrhizal fungal community structure vary along a Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia) gradient? Taniguchi T; Kanzaki N; Tamai S; Yamanaka N; Futai K New Phytol; 2007; 173(2):322-34. PubMed ID: 17204079 [TBL] [Abstract][Full Text] [Related]
107. The arbuscular mycorrhizal status of poplar clones selected for phytoremediation of soils contaminated with heavy metals. Takács T; Radimszky L; Németh T Z Naturforsch C J Biosci; 2005; 60(3-4):357-61. PubMed ID: 15948606 [TBL] [Abstract][Full Text] [Related]
108. Carbon economy of sour orange in response to different Glomus spp. Graham JH; Drouillard DL; Hodge NC Tree Physiol; 1996; 16(11_12):1023-1029. PubMed ID: 14871797 [TBL] [Abstract][Full Text] [Related]
109. Ectomycorrhizas and water relations of trees: a review. Lehto T; Zwiazek JJ Mycorrhiza; 2011 Feb; 21(2):71-90. PubMed ID: 21140277 [TBL] [Abstract][Full Text] [Related]
110. Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq. seedlings. Fougnies L; Renciot S; Muller F; Plenchette C; Prin Y; de Faria SM; Bouvet JM; Sylla SN; Dreyfus B; Bâ AM Mycorrhiza; 2007 May; 17(3):159-166. PubMed ID: 17143615 [TBL] [Abstract][Full Text] [Related]
111. Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. Jakobsen I; Gazey C; Abbott LK New Phytol; 2001 Jan; 149(1):95-103. PubMed ID: 33853235 [TBL] [Abstract][Full Text] [Related]
112. [Effects of arbuscular mycorrhiza on drought tolerance of Poncirus trifoliata]. Wu Q; Xia R; Hu Z Ying Yong Sheng Tai Xue Bao; 2005 Mar; 16(3):459-63. PubMed ID: 15943357 [TBL] [Abstract][Full Text] [Related]
113. Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate. Janoušková M; Rydlová J; Püschel D; Száková J; Vosátka M Mycorrhiza; 2011 Oct; 21(7):641-650. PubMed ID: 21424805 [TBL] [Abstract][Full Text] [Related]
114. Copper release from chemical root-control baskets in hardwood tree production. Kosuta S; Hamel C; Dalpé Y; St-Arnaud M J Environ Qual; 2002; 31(3):910-6. PubMed ID: 12026095 [TBL] [Abstract][Full Text] [Related]
115. Effects of metal lead on growth and mycorrhizae of an invasive plant species (Solidago canadensis L.). Yang R; Yu G; Tang J; Chen X J Environ Sci (China); 2008; 20(6):739-44. PubMed ID: 18763570 [TBL] [Abstract][Full Text] [Related]
116. Two different strategies of Zou YN; Xu YJ; Liu RC; Huang GM; Kuča K; Srivastava AK; Hashem A; Abd Allah EF; Wu QS Front Plant Sci; 2023; 14():1140467. PubMed ID: 36909381 [TBL] [Abstract][Full Text] [Related]
117. An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way. Pauwels R; Graefe J; Bitterlich M Mycorrhiza; 2023 Jun; 33(3):165-179. PubMed ID: 36976365 [TBL] [Abstract][Full Text] [Related]
118. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. Wang G; Jin Z; George TS; Feng G; Zhang L New Phytol; 2023 Jun; 238(6):2578-2593. PubMed ID: 36694293 [TBL] [Abstract][Full Text] [Related]
119. Effects of arbuscular mycorrhizae and extraradical mycelium of subtropical tree species on soil nitrogen mineralization and enzyme activities. Chen YP; Li SK; An B; Zhu Y; Zou HL; Cui SX; Fu HY; Mao R; Zhang Y Ying Yong Sheng Tai Xue Bao; 2023 May; 34(5):1235-1243. PubMed ID: 37236940 [TBL] [Abstract][Full Text] [Related]
120. Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrata (L.) L., grown under three levels of water availability. Stevens KJ; Wall CB; Janssen JA Mycorrhiza; 2011 May; 21(4):279-88. PubMed ID: 20668891 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]