These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 12921446)
1. Antennal responses of the two host races of the larch bud moth, Zeiraphera diniana, to larch and cembran pine volatiles. Syed Z; Guerin PM; Baltensweiler W J Chem Ecol; 2003 Jul; 29(7):1691-708. PubMed ID: 12921446 [TBL] [Abstract][Full Text] [Related]
3. Why the larch bud-moth cycle collapsed in the subalpine larch-cembran pine forests in the year 1990 for the first time since 1850. Baltensweiler W Oecologia; 1993 May; 94(1):62-66. PubMed ID: 28313859 [TBL] [Abstract][Full Text] [Related]
4. Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles. Fraser AM; Mechaber WL; Hildebrand JG J Chem Ecol; 2003 Aug; 29(8):1813-33. PubMed ID: 12956509 [TBL] [Abstract][Full Text] [Related]
5. Host-induced assortative mating in host races of the larch budmoth. Emelianov I; Drès M; Baltensweiler W; Mallet J Evolution; 2001 Oct; 55(10):2002-10. PubMed ID: 11761061 [TBL] [Abstract][Full Text] [Related]
6. Tree-ring proxies of larch bud moth defoliation: latewood width and blue intensity are more precise than tree-ring width. Arbellay E; Jarvis I; Chavardès RD; Daniels LD; Stoffel M Tree Physiol; 2018 Aug; 38(8):1237-1245. PubMed ID: 29788327 [TBL] [Abstract][Full Text] [Related]
7. Attraction of the gypsy moth to volatile organic compounds (VOCs) of damaged Dahurian larch. Li J; Valimaki S; Shi J; Zong S; Luo Y; Heliovaara K Z Naturforsch C J Biosci; 2012; 67(7-8):437-44. PubMed ID: 23016284 [TBL] [Abstract][Full Text] [Related]
8. A contribution to the explanation of the larch bud moth cycle, the polymorphic fitness hypothesis. Baltensweiler W Oecologia; 1993 Mar; 93(2):251-255. PubMed ID: 28313614 [TBL] [Abstract][Full Text] [Related]
9. Summer temperature dependency of larch budmoth outbreaks revealed by Alpine tree-ring isotope chronologies. Kress A; Saurer M; Büntgen U; Treydte KS; Bugmann H; Siegwolf RT Oecologia; 2009 May; 160(2):353-65. PubMed ID: 19219459 [TBL] [Abstract][Full Text] [Related]
10. Volatiles associated with preferred and nonpreferred hosts of the Nantucket pine tip moth, Rhyacionia frustrana. Asaro C; Sullivan BT; Dalusky MJ; Berisford CW J Chem Ecol; 2004 May; 30(5):977-90. PubMed ID: 15274443 [TBL] [Abstract][Full Text] [Related]
11. Electrophysiological and behavioral responses of Ips subelongatus to semiochemicals from its hosts, non-hosts, and conspecifics in China. Zhang QH; Schlyter F; Chen G; Wang Y J Chem Ecol; 2007 Feb; 33(2):391-404. PubMed ID: 17216361 [TBL] [Abstract][Full Text] [Related]
12. Non-host volatiles mediate associational resistance to the pine processionary moth. Jactel H; Birgersson G; Andersson S; Schlyter F Oecologia; 2011 Jul; 166(3):703-11. PubMed ID: 21311911 [TBL] [Abstract][Full Text] [Related]
13. Host Plant Species Differentiation in a Polyphagous Moth: Olfaction is Enough. Conchou L; Anderson P; Birgersson G J Chem Ecol; 2017 Aug; 43(8):794-805. PubMed ID: 28812177 [TBL] [Abstract][Full Text] [Related]
14. Responses of the Mediterranean pine shoot beetle Tomicus destruens (Wollaston) to pine shoot and bark volatiles. Faccoli M; Anfora G; Tasin M J Chem Ecol; 2008 Sep; 34(9):1162-9. PubMed ID: 18704589 [TBL] [Abstract][Full Text] [Related]
15. Olfactory responses of Ips duplicatus from inner Mongolia, China to nonhost leaf and bark volatiles. Zhang QH; Liu GT; Schlyter F; Birgersson G; Anderson P; Valeur P J Chem Ecol; 2001 May; 27(5):995-1009. PubMed ID: 11471951 [TBL] [Abstract][Full Text] [Related]
16. Genetic isolation between two sympatric host-plant races of the European corn borer, Ostrinia nubilalis Hübner. I. Sex pheromone, moth emergence timing, and parasitism. Thomas Y; Bethenod MT; Pelozuelo L; Frérot B; Bourguet D Evolution; 2003 Feb; 57(2):261-73. PubMed ID: 12683523 [TBL] [Abstract][Full Text] [Related]
18. How the choice of method influence on the results in electrophysiological studies of insect olfaction. Wibe A J Insect Physiol; 2004 Jun; 50(6):497-503. PubMed ID: 15183279 [TBL] [Abstract][Full Text] [Related]
19. Electroantennogram (EAG) responses of Microplitis croceipes and Cotesia marginiventris and their lepidopteran hosts to a wide array of odor stimuli: correlation between EAG response and degree of host specificity? Ngumbi E; Chen L; Fadamiro H J Insect Physiol; 2010 Sep; 56(9):1260-8. PubMed ID: 20371248 [TBL] [Abstract][Full Text] [Related]
20. Agonists and antagonists of antennal responses of gypsy moth (Lymantria dispar) to the pheromone (+)-disparlure and other odorants. Plettner E; Gries R J Agric Food Chem; 2010 Mar; 58(6):3708-19. PubMed ID: 20192223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]