These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12922021)

  • 21. Amphibian in vitro heart induction: a simple and reliable model for the study of vertebrate cardiac development.
    Ariizumi T; Kinoshita M; Yokota C; Takano K; Fukuda K; Moriyama N; Malacinski GM; Asashima M
    Int J Dev Biol; 2003 Sep; 47(6):405-10. PubMed ID: 14584778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The ultrastructure of the neuromuscular synapses at different stages in the development of the embryos and tadpoles of the clawed toad].
    Kashapova LA; Bezgina EN; Savel'eva LN; Shodina IB
    Morfologiia; 1996; 110(6):60-4. PubMed ID: 9162414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amphibian embryos as a model system for organ engineering: in vitro induction and rescue of the heart anlage.
    Grunz H
    Int J Dev Biol; 1999 Jul; 43(4):361-4. PubMed ID: 10470654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis.
    Gessert S; Kühl M
    Dev Biol; 2009 Oct; 334(2):395-408. PubMed ID: 19660447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple functions of Cerberus cooperate to induce heart downstream of Nodal.
    Foley AC; Korol O; Timmer AM; Mercola M
    Dev Biol; 2007 Mar; 303(1):57-65. PubMed ID: 17123501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Labeling primitive myeloid progenitor cells in Xenopus.
    Costa R; Chen Y; Paredes R; Amaya E
    Methods Mol Biol; 2012; 916():141-55. PubMed ID: 22914938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cardiac myosin heavy chain expression during heart development in Xenopus laevis.
    Cox WG; Neff AW
    Differentiation; 1995 Apr; 58(4):269-80. PubMed ID: 7641978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The morphology of heart development in Xenopus laevis.
    Mohun TJ; Leong LM; Weninger WJ; Sparrow DB
    Dev Biol; 2000 Feb; 218(1):74-88. PubMed ID: 10644412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conservation of gene expression during embryonic lens formation and cornea-lens transdifferentiation in Xenopus laevis.
    Schaefer JJ; Oliver G; Henry JJ
    Dev Dyn; 1999 Aug; 215(4):308-18. PubMed ID: 10417820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis.
    Shook DR; Majer C; Keller R
    Dev Biol; 2004 Jun; 270(1):163-85. PubMed ID: 15136148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fertilization and development of eggs of the South African clawed toad, Xenopus laevis, on sounding rockets in space.
    Ubbels GA; Berendsen W; Kerkvliet S; Narraway J
    Adv Space Res; 1992; 12(1):181-94. PubMed ID: 11536956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation and Care of Xenopus laevis and Xenopus tropicalis Embryos.
    Wlizla M; McNamara S; Horb ME
    Methods Mol Biol; 2018; 1865():19-32. PubMed ID: 30151756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. XPOX2-peroxidase expression and the XLURP-1 promoter reveal the site of embryonic myeloid cell development in Xenopus.
    Smith SJ; Kotecha S; Towers N; Latinkic BV; Mohun TJ
    Mech Dev; 2002 Sep; 117(1-2):173-86. PubMed ID: 12204257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early embryonic development of Xenopus laevis.
    Keller R
    Methods Cell Biol; 1991; 36():61-113. PubMed ID: 1811154
    [No Abstract]   [Full Text] [Related]  

  • 35. Localization of endogenous galactoside-binding lectin during morphogenesis of Xenopus laevis.
    Milos NC; Ma YL; Varma PV; Bering MP; Mohamed Z; Pilarski LM; Frunchak YN
    Anat Embryol (Berl); 1990; 182(4):319-27. PubMed ID: 2123609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of external tensions in differentiation of Xenopus laevis embryonic tissues.
    Beloussov LV; Lakirev AV; Naumidi II
    Cell Differ Dev; 1988 Dec; 25(3):165-76. PubMed ID: 3233534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage.
    Cooke J; Webber JA
    J Embryol Exp Morphol; 1985 Aug; 88():85-112. PubMed ID: 4078542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vertebrate Ctr1 coordinates morphogenesis and progenitor cell fate and regulates embryonic stem cell differentiation.
    Haremaki T; Fraser ST; Kuo YM; Baron MH; Weinstein DC
    Proc Natl Acad Sci U S A; 2007 Jul; 104(29):12029-34. PubMed ID: 17620605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three regions of the 32-cell embryo of Xenopus laevis essential for formation of a complete tadpole.
    Kageura H
    Dev Biol; 1995 Aug; 170(2):376-86. PubMed ID: 7649370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Xapelin and Xmsr are required for cardiovascular development in Xenopus laevis.
    Inui M; Fukui A; Ito Y; Asashima M
    Dev Biol; 2006 Oct; 298(1):188-200. PubMed ID: 16876154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.