BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12922022)

  • 1. Circulating vascular progenitor cells contribute to vascular repair, remodeling, and lesion formation.
    Sata M
    Trends Cardiovasc Med; 2003 Aug; 13(6):249-53. PubMed ID: 12922022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Circulating progenitors contribute to angiogenesis, vascular repair, and lesion formation].
    Sata M
    Rinsho Byori; 2005 Jan; 53(1):70-6. PubMed ID: 15724493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential contribution of bone marrow-derived precursors to vascular repair and lesion formation: lessons from animal models of vascular diseases.
    Iwata H; Sata M
    Front Biosci; 2007 May; 12():4157-67. PubMed ID: 17485364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis.
    Sata M; Saiura A; Kunisato A; Tojo A; Okada S; Tokuhisa T; Hirai H; Makuuchi M; Hirata Y; Nagai R
    Nat Med; 2002 Apr; 8(4):403-9. PubMed ID: 11927948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular strategies to treat vascular diseases: circulating vascular progenitor cell as a potential target for prophylactic treatment of atherosclerosis.
    Sata M
    Circ J; 2003 Dec; 67(12):983-91. PubMed ID: 14639011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of circulating precursors in vascular repair and lesion formation.
    Sata M; Fukuda D; Tanaka K; Kaneda Y; Yashiro H; Shirakawa I
    J Cell Mol Med; 2005; 9(3):557-68. PubMed ID: 16202205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of circulating vascular progenitors in lesion formation and vascular healing: lessons from animal models.
    Tanaka K; Sata M
    Curr Opin Lipidol; 2008 Oct; 19(5):498-504. PubMed ID: 18769231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal and spatial characterization of cellular constituents during neointimal hyperplasia after vascular injury: Potential contribution of bone-marrow-derived progenitors to arterial remodeling.
    Shoji M; Sata M; Fukuda D; Tanaka K; Sato T; Iso Y; Shibata M; Suzuki H; Koba S; Geshi E; Katagiri T
    Cardiovasc Pathol; 2004; 13(6):306-12. PubMed ID: 15556776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow-derived vascular cells in response to injury.
    Yokote K; Take A; Nakaseko C; Kobayashi K; Fujimoto M; Kawamura H; Maezawa Y; Nishimura M; Mori S; Saito Y
    J Atheroscler Thromb; 2003; 10(4):205-10. PubMed ID: 14566083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smooth muscle progenitor cells: friend or foe in vascular disease?
    van Oostrom O; Fledderus JO; de Kleijn D; Pasterkamp G; Verhaar MC
    Curr Stem Cell Res Ther; 2009 May; 4(2):131-40. PubMed ID: 19442197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of circulating vascular progenitors in angiogenesis, vascular healing, and pulmonary hypertension: lessons from animal models.
    Sata M
    Arterioscler Thromb Vasc Biol; 2006 May; 26(5):1008-14. PubMed ID: 16456096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progenitor cells in arteriosclerosis: good or bad guys?
    Campagnolo P; Wong MM; Xu Q
    Antioxid Redox Signal; 2011 Aug; 15(4):1013-27. PubMed ID: 20812863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stem cells and transplant arteriosclerosis.
    Xu Q
    Circ Res; 2008 May; 102(9):1011-24. PubMed ID: 18467640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circulating smooth muscle progenitor cells in arterial remodeling.
    Daniel JM; Sedding DG
    J Mol Cell Cardiol; 2011 Feb; 50(2):273-9. PubMed ID: 21047514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of bone marrow-derived progenitor cells in cuff-induced vascular injury in mice.
    Xu Y; Arai H; Zhuge X; Sano H; Murayama T; Yoshimoto M; Heike T; Nakahata T; Nishikawa S; Kita T; Yokode M
    Arterioscler Thromb Vasc Biol; 2004 Mar; 24(3):477-82. PubMed ID: 14739121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition.
    Werner N; Priller J; Laufs U; Endres M; Böhm M; Dirnagl U; Nickenig G
    Arterioscler Thromb Vasc Biol; 2002 Oct; 22(10):1567-72. PubMed ID: 12377731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A new concept of development of neointimal hyperplasia].
    Il'inskaia OP; Antropova IuG; Kalinina NI; Mishina VA; Tararak éM; Smirnov VN
    Ross Fiziol Zh Im I M Sechenova; 2004 Oct; 90(10):1203-14. PubMed ID: 15628176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathophysiology of stem cells in restenosis.
    Forte A; Cipollaro M; Cascino A; Galderisi U
    Histol Histopathol; 2007 May; 22(5):547-57. PubMed ID: 17330810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of cAMP-phosphodiesterase 1C signaling in regulating growth factor receptor stability, vascular smooth muscle cell growth, migration, and neointimal hyperplasia.
    Cai Y; Nagel DJ; Zhou Q; Cygnar KD; Zhao H; Li F; Pi X; Knight PA; Yan C
    Circ Res; 2015 Mar; 116(7):1120-32. PubMed ID: 25608528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular Stem/Progenitor Cell Migration and Differentiation in Atherosclerosis.
    Yu B; Chen Q; Le Bras A; Zhang L; Xu Q
    Antioxid Redox Signal; 2018 Jul; 29(2):219-235. PubMed ID: 28537424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.