These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12922156)

  • 1. Towards biomimetic scaffolds: anhydrous scaffold fabrication from biodegradable amine-reactive diblock copolymers.
    Hacker M; Tessmar J; Neubauer M; Blaimer A; Blunk T; Göpferich A; Schulz MB
    Biomaterials; 2003 Nov; 24(24):4459-73. PubMed ID: 12922156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of poly(ethylene glycol)-block-poly(lactic acid) derived copolymers for the rapid creation of biomimetic surfaces.
    Tessmar J; Mikos A; Göpferich A
    Biomaterials; 2003 Nov; 24(24):4475-86. PubMed ID: 12922157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amine-reactive biodegradable diblock copolymers.
    Tessmar JK; Mikos AG; Göpferich A
    Biomacromolecules; 2002; 3(1):194-200. PubMed ID: 11866573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic acid) and starch based biodegradable scaffolds.
    Ghosh S; Viana JC; Reis RL; Mano JF
    J Mater Sci Mater Med; 2007 Feb; 18(2):185-93. PubMed ID: 17323149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials.
    Lucke A; Tessmar J; Schnell E; Schmeer G; Göpferich A
    Biomaterials; 2000 Dec; 21(23):2361-70. PubMed ID: 11055283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores.
    Chen VJ; Ma PX
    Biomaterials; 2004 May; 25(11):2065-73. PubMed ID: 14741621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of poly(L-lactic acid) nanofiber scaffolds with a rough surface by phase inversion using supercritical carbon dioxide.
    Yang DZ; Chen AZ; Wang SB; Li Y; Tang XL; Wu YJ
    Biomed Mater; 2015 Jun; 10(3):035015. PubMed ID: 26107415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K; Mann B; Wicker R
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens.
    Johnson T; Bahrampourian R; Patel A; Mequanint K
    Biomed Mater Eng; 2010; 20(2):107-18. PubMed ID: 20592448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface property and in vitro biodegradation of microspheres fabricated by poly(epsilon-caprolactone-b-ethylene oxide) diblock copolymers.
    Yu G; Zhang Y; Shi X; Li Z; Gan Z
    J Biomed Mater Res A; 2008 Mar; 84(4):926-39. PubMed ID: 17647229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state cryomilling for porogen mixing and porous scaffold fabrication - biomed 2011.
    Allaf RM; Rivero IV
    Biomed Sci Instrum; 2011; 47():258-63. PubMed ID: 21525630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Customized PEG-derived copolymers for tissue-engineering applications.
    Tessmar JK; Göpferich AM
    Macromol Biosci; 2007 Jan; 7(1):23-39. PubMed ID: 17195277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique.
    Wang W; Nie W; Zhou X; Feng W; Chen L; Zhang Q; You Z; Shi Q; Peng C; He C
    Acta Biomater; 2018 Oct; 79():168-181. PubMed ID: 30121374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds.
    Hedberg EL; Shih CK; Lemoine JJ; Timmer MD; Liebschner MA; Jansen JA; Mikos AG
    Biomaterials; 2005 Jun; 26(16):3215-25. PubMed ID: 15603816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid lipid templating of macroporous tissue engineering scaffolds.
    Hacker M; Ringhofer M; Appel B; Neubauer M; Vogel T; Young S; Mikos AG; Blunk T; Göpferich A; Schulz MB
    Biomaterials; 2007 Aug; 28(24):3497-507. PubMed ID: 17482257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediating specific cell adhesion to low-adhesive diblock copolymers by instant modification with cyclic RGD peptides.
    Lieb E; Hacker M; Tessmar J; Kunz-Schughart LA; Fiedler J; Dahmen C; Hersel U; Kessler H; Schulz MB; Göpferich A
    Biomaterials; 2005 May; 26(15):2333-41. PubMed ID: 15585236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation.
    Kim HD; Bae EH; Kwon IC; Pal RR; Nam JD; Lee DS
    Biomaterials; 2004 May; 25(12):2319-29. PubMed ID: 14741597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.