These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 12923101)

  • 21. Evidence in support of a docking model for the release of the transcription factor sigma F from the antisigma factor SpoIIAB in Bacillus subtilis.
    Ho MS; Carniol K; Losick R
    J Biol Chem; 2003 Jun; 278(23):20898-905. PubMed ID: 12676949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division.
    Duncan L; Alper S; Arigoni F; Losick R; Stragier P
    Science; 1995 Oct; 270(5236):641-4. PubMed ID: 7570023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins.
    Krüger E; Witt E; Ohlmeier S; Hanschke R; Hecker M
    J Bacteriol; 2000 Jun; 182(11):3259-65. PubMed ID: 10809708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SpoIVB and CtpB are both forespore signals in the activation of the sporulation transcription factor sigmaK in Bacillus subtilis.
    Campo N; Rudner DZ
    J Bacteriol; 2007 Aug; 189(16):6021-7. PubMed ID: 17557826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A regulatory switch involving a Clp ATPase.
    Lazazzera BA; Grossman AD
    Bioessays; 1997 Jun; 19(6):455-8. PubMed ID: 9204762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence and kinetic analysis of the SpoIIAB phosphorylation reaction, a key regulator of sporulation in Bacillus subtilis.
    Clarkson J; Shu JC; Harris DA; Campbell ID; Yudkin MD
    Biochemistry; 2004 Mar; 43(11):3120-8. PubMed ID: 15023063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis.
    Derré I; Rapoport G; Devine K; Rose M; Msadek T
    Mol Microbiol; 1999 May; 32(3):581-93. PubMed ID: 10320580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis.
    Nakano MM; Hajarizadeh F; Zhu Y; Zuber P
    Mol Microbiol; 2001 Oct; 42(2):383-94. PubMed ID: 11703662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response.
    Turgay K; Persuh M; Hahn J; Dubnau D
    Mol Microbiol; 2001 Nov; 42(3):717-27. PubMed ID: 11722737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SpoIIAA governs the release of the cell-type specific transcription factor sigma F from its anti-sigma factor SpoIIAB.
    Duncan L; Alper S; Losick R
    J Mol Biol; 1996 Jul; 260(2):147-64. PubMed ID: 8764397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of the expression and compartmentalization of (sigma)G activity during sporulation of Bacillus subtilis by regulators of (sigma)F and (sigma)E.
    Chary VK; Meloni M; Hilbert DW; Piggot PJ
    J Bacteriol; 2005 Oct; 187(19):6832-40. PubMed ID: 16166546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees C.
    Derré I; Rapoport G; Msadek T
    Mol Microbiol; 2000 Oct; 38(2):335-47. PubMed ID: 11069659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sigma F, the first compartment-specific transcription factor of B. subtilis, is regulated by an anti-sigma factor that is also a protein kinase.
    Min KT; Hilditch CM; Diederich B; Errington J; Yudkin MD
    Cell; 1993 Aug; 74(4):735-42. PubMed ID: 8358793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance.
    Gerth U; Krüger E; Derré I; Msadek T; Hecker M
    Mol Microbiol; 1998 May; 28(4):787-802. PubMed ID: 9643546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential gene expression in genetically identical sister cells: the initiation of sporulation in Bacillus subtilis.
    Yudkin MD; Clarkson J
    Mol Microbiol; 2005 May; 56(3):578-89. PubMed ID: 15819616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic analysis of SecA-SecY interaction required for spore development in Bacillus subtilis.
    Kobayashi H; Ohashi Y; Nanamiya H; Asai K; Kawamura F
    FEMS Microbiol Lett; 2000 Mar; 184(2):285-9. PubMed ID: 10713435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor sigma F of Bacillus subtilis.
    Diederich B; Wilkinson JF; Magnin T; Najafi M; Errington J; Yudkin MD
    Genes Dev; 1994 Nov; 8(21):2653-63. PubMed ID: 7958923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity control of the ClpC adaptor McsB in Bacillus subtilis.
    Elsholz AK; Hempel K; Michalik S; Gronau K; Becher D; Hecker M; Gerth U
    J Bacteriol; 2011 Aug; 193(15):3887-93. PubMed ID: 21622759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fine-tuning in regulation of Clp protein content in Bacillus subtilis.
    Gerth U; Kirstein J; Mostertz J; Waldminghaus T; Miethke M; Kock H; Hecker M
    J Bacteriol; 2004 Jan; 186(1):179-91. PubMed ID: 14679237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in vitro.
    Laskowska E; Kuczyńska-Wiśnik D; Skórko-Glonek J; Taylor A
    Mol Microbiol; 1996 Nov; 22(3):555-71. PubMed ID: 8939438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.