BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12923169)

  • 1. Identification of a heteromeric interaction that influences the rectification, gating, and pH sensitivity of Kir4.1/Kir5.1 potassium channels.
    Casamassima M; D'Adamo MC; Pessia M; Tucker SJ
    J Biol Chem; 2003 Oct; 278(44):43533-40. PubMed ID: 12923169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of domains that control the heteromeric assembly of Kir5.1/Kir4.0 potassium channels.
    Konstas AA; Korbmacher C; Tucker SJ
    Am J Physiol Cell Physiol; 2003 Apr; 284(4):C910-7. PubMed ID: 12456399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.
    Shang L; Tucker SJ
    Eur Biophys J; 2008 Feb; 37(2):165-71. PubMed ID: 17657484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of pH and PIP2 gating in heteromeric Kir4.1/Kir5.1 channels by H-Bonding at the helix-bundle crossing.
    Rapedius M; Paynter JJ; Fowler PW; Shang L; Sansom MS; Tucker SJ; Baukrowitz T
    Channels (Austin); 2007; 1(5):327-30. PubMed ID: 18690035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH.
    Yang Z; Xu H; Cui N; Qu Z; Chanchevalap S; Shen W; Jiang C
    J Gen Physiol; 2000 Jul; 116(1):33-45. PubMed ID: 10871638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1.
    Pessia M; Imbrici P; D'Adamo MC; Salvatore L; Tucker SJ
    J Physiol; 2001 Apr; 532(Pt 2):359-67. PubMed ID: 11306656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1.
    Tanemoto M; Kittaka N; Inanobe A; Kurachi Y
    J Physiol; 2000 Jun; 525 Pt 3(Pt 3):587-92. PubMed ID: 10856114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver.
    Pearson WL; Dourado M; Schreiber M; Salkoff L; Nichols CG
    J Physiol; 1999 Feb; 514 ( Pt 3)(Pt 3):639-53. PubMed ID: 9882736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of Kir4.2 rectification properties and pHi-sensitive run-down by association with Kir5.1.
    Lam HD; Lemay AM; Briggs MM; Yung M; Hill CE
    Biochim Biophys Acta; 2006 Nov; 1758(11):1837-45. PubMed ID: 16949552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase C dependent inhibition of the heteromeric Kir4.1-Kir5.1 channel.
    Rojas A; Cui N; Su J; Yang L; Muhumuza JP; Jiang C
    Biochim Biophys Acta; 2007 Sep; 1768(9):2030-42. PubMed ID: 17585871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of kir4.1 and kir5.1 by hypercapnia and intracellular acidosis.
    Xu H; Cui N; Yang Z; Qu Z; Jiang C
    J Physiol; 2000 May; 524 Pt 3(Pt 3):725-35. PubMed ID: 10790154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia.
    Tucker SJ; Imbrici P; Salvatore L; D'Adamo MC; Pessia M
    J Biol Chem; 2000 Jun; 275(22):16404-7. PubMed ID: 10764726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kir5.1 underlies long-lived subconductance levels in heteromeric Kir4.1/Kir5.1 channels from Xenopus tropicalis.
    Shang L; Ranson SV; Tucker SJ
    Biochem Biophys Res Commun; 2009 Oct; 388(3):501-5. PubMed ID: 19665991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10).
    Sala-Rabanal M; Kucheryavykh LY; Skatchkov SN; Eaton MJ; Nichols CG
    J Biol Chem; 2010 Nov; 285(46):36040-8. PubMed ID: 20807765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kir4.1/Kir5.1 channels possess strong intrinsic inward rectification determined by a voltage-dependent K+-flux gating mechanism.
    Marmolejo-Murillo LG; Aréchiga-Figueroa IA; Moreno-Galindo EG; Ferrer T; Zamora-Cárdenas R; Navarro-Polanco RA; Sánchez-Chapula JA; Rodríguez-Menchaca AA
    J Gen Physiol; 2021 May; 153(5):. PubMed ID: 33822868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VU6036720: The First Potent and Selective In Vitro Inhibitor of Heteromeric Kir4.1/5.1 Inward Rectifier Potassium Channels.
    McClenahan SJ; Kent CN; Kharade SV; Isaeva E; Williams JC; Han C; Terker A; Gresham R; Lazarenko RM; Days EL; Romaine IM; Bauer JA; Boutaud O; Sulikowski GA; Harris R; Weaver CD; Staruschenko A; Lindsley CW; Denton JS
    Mol Pharmacol; 2022 May; 101(5):357-370. PubMed ID: 35246480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S-Glutathionylation underscores the modulation of the heteromeric Kir4.1-Kir5.1 channel in oxidative stress.
    Jin X; Yu L; Wu Y; Zhang S; Shi Z; Chen X; Yang Y; Zhang X; Jiang C
    J Physiol; 2012 Nov; 590(21):5335-48. PubMed ID: 22907060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS.
    Brasko C; Hawkins V; De La Rocha IC; Butt AM
    Brain Struct Funct; 2017 Jan; 222(1):41-59. PubMed ID: 26879293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes.
    Hibino H; Fujita A; Iwai K; Yamada M; Kurachi Y
    J Biol Chem; 2004 Oct; 279(42):44065-73. PubMed ID: 15310750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inwardly Rectifying K
    Pérez-Samartín A; Garay E; Moctezuma JPH; Cisneros-Mejorado A; Sánchez-Gómez MV; Martel-Gallegos G; Robles-Martínez L; Canedo-Antelo M; Matute C; Arellano RO
    Neurochem Res; 2017 Sep; 42(9):2443-2455. PubMed ID: 28345117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.