These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12923461)

  • 41. Matrix metalloproteinase-12 immunolocalization in the degenerating human intervertebral disc and sand rat spine: Biologic implications.
    Gruber HE; Ingram JA; Cox MD; Hanley EN
    Exp Mol Pathol; 2014 Aug; 97(1):1-5. PubMed ID: 24768589
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The sand rat model for disc degeneration: radiologic characterization of age-related changes: cross-sectional and prospective analyses.
    Gruber HE; Johnson T; Norton HJ; Hanley EN
    Spine (Phila Pa 1976); 2002 Feb; 27(3):230-4. PubMed ID: 11805683
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Morphometrics and lesions of vertebral end plates are associated with lumbar disc degeneration: evidence from cadaveric spines.
    Wang Y; Videman T; Battié MC
    J Bone Joint Surg Am; 2013 Mar; 95(5):e26. PubMed ID: 23467874
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin).
    Hamrick MW; Pennington C; Byron CD
    J Orthop Res; 2003 Nov; 21(6):1025-32. PubMed ID: 14554215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computational study on the effect of loading alteration caused by disc degeneration on the trabecular architecture in human lumbar spine.
    Jang IG; Kim IY
    J Biomech; 2010 Feb; 43(3):492-9. PubMed ID: 19875123
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Age-related differences in the biological parameters of vertebral cancellous bone from Chinese women.
    Jiang R; Liu GM; Bai HT; Wang TB; Wu H; Jia YY; Luo YG
    Chin Med J (Engl); 2013 Oct; 126(20):3828-32. PubMed ID: 24157140
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of growth modulation on the effective permeability of the vertebral end plate. A porcine experimental scoliosis model.
    Accadbled F; Laffosse JM; Odent T; Gomez-Brouchet A; Sales de Gauzy J; Swider P
    Clin Biomech (Bristol, Avon); 2011 May; 26(4):337-42. PubMed ID: 21146266
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Defects of the vertebral end plate: implications for disc degeneration depend on size.
    Zehra U; Flower L; Robson-Brown K; Adams MA; Dolan P
    Spine J; 2017 May; 17(5):727-737. PubMed ID: 28108405
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of disc lesion on microdamage accumulation in lumbar vertebrae under cyclic compression loading.
    Hasegawa K; Turner CH; Chen J; Burr DB
    Clin Orthop Relat Res; 1995 Feb; (311):190-8. PubMed ID: 7634575
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Injuries in adolescent spine exposed to compressive loads: an experimental cadaveric study.
    Karlsson L; Lundin O; Ekström L; Hansson T; Swärd L
    J Spinal Disord; 1998 Dec; 11(6):501-7. PubMed ID: 9884295
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Correlation between bone mineral density and intervertebral disc degeneration.
    Harada A; Okuizumi H; Miyagi N; Genda E
    Spine (Phila Pa 1976); 1998 Apr; 23(8):857-61; discussion 862. PubMed ID: 9580951
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of repetitive strains on vertebral end plates in young rats.
    Revel M; Andre-Deshays C; Roudier R; Roudier B; Hamard G; Amor B
    Clin Orthop Relat Res; 1992 Jun; (279):303-9. PubMed ID: 1600670
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mineral distribution in rat skeletons after exposure to a microgravity model.
    Arnaud SB; Harper JS; Navidi M
    J Gravit Physiol; 1995; 2(1):P115-6. PubMed ID: 11538889
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomechanical, radiologic, and histopathologic correlations in the pathogenesis of experimental intervertebral disc disease.
    Ziran BH; Pineda S; Pokharna H; Esteki A; Mansour JM; Moskowitz RW
    Spine (Phila Pa 1976); 1994 Oct; 19(19):2159-63. PubMed ID: 7809747
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in bone noncollagenous proteins and bone mineral loss in lumbar vertebrae of tail-suspended rats.
    Cui W; Shi Z; Liu C; Zheng Q
    Space Med Med Eng (Beijing); 1997 Dec; 10(6):401-4. PubMed ID: 11540434
    [TBL] [Abstract][Full Text] [Related]  

  • 56. End plate marrow changes in the asymptomatic lumbosacral spine: frequency, distribution and correlation with age and degenerative changes.
    Chung CB; Vande Berg BC; Tavernier T; Cotten A; Laredo JD; Vallee C; Malghem J
    Skeletal Radiol; 2004 Jul; 33(7):399-404. PubMed ID: 15138721
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Degeneration of the intervertebral disks and spondylosis in aging sand rats.
    Silberberg R; Aufdermaur M; Adler JH
    Arch Pathol Lab Med; 1979 May; 103(5):231-5. PubMed ID: 582256
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Morphologic features of the cervical intervertebral disks and adjacent vertebral bodies of horses.
    Yovich JV; Powers BE; Stashak TS
    Am J Vet Res; 1985 Nov; 46(11):2372-7. PubMed ID: 4073650
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Study of the growth of the vertebral bodies in adolescents].
    Schwytzer FX
    Acta Anat (Basel); 1977; 98(1):52-61. PubMed ID: 871076
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pathological changes in the cartilaginous plates in relation to intervertebral disc lesions.
    Yasuma T; Suzuki F; Koh S; Yamauchi Y
    Acta Pathol Jpn; 1988 Jun; 38(6):735-50. PubMed ID: 3218514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.