BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12924029)

  • 1. [Conformational changes in HIV-1 proteinase: effect of protonation of the active center on conformation of HIV-1 proteinase in water].
    Koval'skiĭ DB; Kanibolotskiĭ DS; Dubina VN; Korneliuk AI
    Ukr Biokhim Zh (1999); 2002; 74(6):135-8. PubMed ID: 12924029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular dynamics study of the structural stability of HIV-1 protease under physiological conditions: the role of Na+ ions in stabilizing the active site.
    Kovalskyy D; Dubyna V; Mark AE; Kornelyuk A
    Proteins; 2005 Feb; 58(2):450-8. PubMed ID: 15562519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling HIV protease flaps dynamics by Constant pH Molecular Dynamics simulations.
    Soares RO; Torres PHM; da Silva ML; Pascutti PG
    J Struct Biol; 2016 Aug; 195(2):216-226. PubMed ID: 27291071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and dynamical properties of different protonated states of mutant HIV-1 protease complexed with the saquinavir inhibitor studied by molecular dynamics simulations.
    Aruksakunwong O; Wittayanarakul K; Sompornpisut P; Sanghiran V; Parasuk V; Hannongbua S
    J Mol Graph Model; 2006 Nov; 25(3):324-32. PubMed ID: 16504560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of lead fullerene-based inhibitor bound to human immunodeficiency virus type 1 protease in solution from molecular dynamics simulations.
    Lee VS; Nimmanpipug P; Aruksakunwong O; Promsri S; Sompornpisut P; Hannongbua S
    J Mol Graph Model; 2007 Sep; 26(2):558-70. PubMed ID: 17468026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations.
    Wittayanarakul K; Aruksakunwong O; Sompornpisut P; Sanghiran-Lee V; Parasuk V; Pinitglang S; Hannongbua S
    J Chem Inf Model; 2005; 45(2):300-8. PubMed ID: 15807491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio molecular dynamics-based assignment of the protonation state of pepstatin A/HIV-1 protease cleavage site.
    Piana S; Sebastiani D; Carloni P; Parrinello M
    J Am Chem Soc; 2001 Sep; 123(36):8730-7. PubMed ID: 11535077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-REMD simulations indicate that the catalytic aspartates of HIV-1 protease exist primarily in a monoprotonated state.
    McGee TD; Edwards J; Roitberg AE
    J Phys Chem B; 2014 Nov; 118(44):12577-85. PubMed ID: 25340507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of the first steps of the reaction catalyzed by HIV-1 protease.
    Trylska J; Bała P; Geller M; Grochowski P
    Biophys J; 2002 Aug; 83(2):794-807. PubMed ID: 12124265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA; Cukier RI
    Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionization state of the catalytic dyad Asp25/25' in the HIV-1 protease: NMR studies of site-specifically 13C labelled HIV-1 protease prepared by total chemical synthesis.
    Torbeev VY; Kent SB
    Org Biomol Chem; 2012 Aug; 10(30):5887-91. PubMed ID: 22659831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of hydrogen bonding in the enzymatic reaction catalyzed by HIV-1 protease.
    Trylska J; Grochowski P; McCammon JA
    Protein Sci; 2004 Feb; 13(2):513-28. PubMed ID: 14739332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the functional role of protonation states in the HIV-1 protease-BEA369 complex: molecular dynamics simulations and free energy calculations.
    Chen J; Yang M; Hu G; Shi S; Yi C; Zhang Q
    J Mol Model; 2009 Oct; 15(10):1245-52. PubMed ID: 19294437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition and catalytic mechanism of HIV-1 aspartic protease.
    Silva AM; Cachau RE; Sham HL; Erickson JW
    J Mol Biol; 1996 Jan; 255(2):321-46. PubMed ID: 8551523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray structure of HIV-1 protease in situ product complex.
    Bihani S; Das A; Prashar V; Ferrer JL; Hosur MV
    Proteins; 2009 Feb; 74(3):594-602. PubMed ID: 18704947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the structure of HIV-1 protease complexed with a hexapeptide inhibitor. Part II: Molecular dynamic studies of the active site region.
    Geller M; Miller M; Swanson SM; Maizel J
    Proteins; 1997 Feb; 27(2):195-203. PubMed ID: 9061783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of HIV-1 protease with peptide substrate.
    Harrison RW; Weber IT
    Protein Eng; 1994 Nov; 7(11):1353-63. PubMed ID: 7700867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active-site mobility in human immunodeficiency virus, type 1, protease as demonstrated by crystal structure of A28S mutant.
    Hong L; Hartsuck JA; Foundling S; Ermolieff J; Tang J
    Protein Sci; 1998 Feb; 7(2):300-5. PubMed ID: 9521105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray snapshot of HIV-1 protease in action: observation of tetrahedral intermediate and short ionic hydrogen bond SIHB with catalytic aspartate.
    Das A; Mahale S; Prashar V; Bihani S; Ferrer JL; Hosur MV
    J Am Chem Soc; 2010 May; 132(18):6366-73. PubMed ID: 20397633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the S1/S1' substrate binding pocket geometry of HIV-1 protease with modified aspartic acid analogues.
    Short GF; Laikhter AL; Lodder M; Shayo Y; Arslan T; Hecht SM
    Biochemistry; 2000 Aug; 39(30):8768-81. PubMed ID: 10913288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.