These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 12924467)

  • 1. Rhythmic clock gene expression in the hypophyseal pars tuberalis is regulated by melatonin.
    von Gall C
    Ann Anat; 2003 Jul; 185(4):301-2. PubMed ID: 12924467
    [No Abstract]   [Full Text] [Related]  

  • 2. Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis.
    von Gall C; Weaver DR; Moek J; Jilg A; Stehle JH; Korf HW
    Ann N Y Acad Sci; 2005 Apr; 1040():508-11. PubMed ID: 15891103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus).
    Johnston JD; Ebling FJ; Hazlerigg DG
    Eur J Neurosci; 2005 Jun; 21(11):2967-74. PubMed ID: 15978008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhythms in clock proteins in the mouse pars tuberalis depend on MT1 melatonin receptor signalling.
    Jilg A; Moek J; Weaver DR; Korf HW; Stehle JH; von Gall C
    Eur J Neurosci; 2005 Dec; 22(11):2845-54. PubMed ID: 16324119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clock gene mRNA and protein rhythms in the pineal gland of mice.
    Karolczak M; Burbach GJ; Sties G; Korf HW; Stehle JH
    Eur J Neurosci; 2004 Jun; 19(12):3382-8. PubMed ID: 15217395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Synchronization and genetic redundancy in circadian clocks].
    Dardente H
    Med Sci (Paris); 2008 Mar; 24(3):270-6. PubMed ID: 18334175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunocytochemical demonstration of day/night changes of clock gene protein levels in the murine adrenal gland: differences between melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice.
    Torres-Farfan C; Serón-Ferré M; Dinet V; Korf HW
    J Pineal Res; 2006 Jan; 40(1):64-70. PubMed ID: 16313500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential maturation of circadian rhythms in clock gene proteins in the suprachiasmatic nucleus and the pars tuberalis during mouse ontogeny.
    Ansari N; Agathagelidis M; Lee C; Korf HW; von Gall C
    Eur J Neurosci; 2009 Feb; 29(3):477-89. PubMed ID: 19222558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis.
    Lincoln GA; Andersson H; Hazlerigg D
    J Neuroendocrinol; 2003 Apr; 15(4):390-7. PubMed ID: 12622839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian rhythms. Integrating circadian timekeeping with cellular physiology.
    Harrisingh MC; Nitabach MN
    Science; 2008 May; 320(5878):879-80. PubMed ID: 18487177
    [No Abstract]   [Full Text] [Related]  

  • 11. Ontogenesis of photoperiodic entrainment of the molecular core clockwork in the rat suprachiasmatic nucleus.
    Kováciková Z; Sládek M; Laurinová K; Bendová Z; Illnerová H; Sumová A
    Brain Res; 2005 Dec; 1064(1-2):83-9. PubMed ID: 16289486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diurnal variation in CREB phosphorylation and PER1 protein levels in lactotroph cells of melatonin-proficient C3H and melatonin-deficient C57BL mice: similarities and differences.
    Sheynzon P; Karolczak M; Dehghani F; Korf HW
    Cell Tissue Res; 2005 Aug; 321(2):211-7. PubMed ID: 15947965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. View of a mouse clock gene ticking.
    Yamaguchi S; Kobayashi M; Mitsui S; Ishida Y; van der Horst GT; Suzuki M; Shibata S; Okamura H
    Nature; 2001 Feb; 409(6821):684. PubMed ID: 11217850
    [No Abstract]   [Full Text] [Related]  

  • 14. Circadian and photic regulation of clock and clock-controlled proteins in the suprachiasmatic nuclei of calorie-restricted mice.
    Mendoza J; Pévet P; Challet E
    Eur J Neurosci; 2007 Jun; 25(12):3691-701. PubMed ID: 17610588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular clocks. PERpetuating the PASt.
    Sassone-Corsi P
    Nature; 1997 Oct; 389(6650):443-4. PubMed ID: 9333230
    [No Abstract]   [Full Text] [Related]  

  • 16. Toward construction of a self-sustained clock-like expression system based on the mammalian circadian clock.
    Chilov D; Fussenegger M
    Biotechnol Bioeng; 2004 Jul; 87(2):234-42. PubMed ID: 15236253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of clock genes in human peripheral blood mononuclear cells throughout the sleep/wake and circadian cycles.
    James FO; Boivin DB; Charbonneau S; Bélanger V; Cermakian N
    Chronobiol Int; 2007; 24(6):1009-34. PubMed ID: 18075796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Molecular mechanism of rhythmic clock gene transcription, lipid metabolism and torpor].
    Ishida N
    Seikagaku; 2009 Feb; 81(2):75-83. PubMed ID: 19306652
    [No Abstract]   [Full Text] [Related]  

  • 19. Circadian clocks: tips from the tip of the iceberg.
    Turek FW
    Nature; 2008 Dec; 456(7224):881-3. PubMed ID: 19092918
    [No Abstract]   [Full Text] [Related]  

  • 20. Organisation of the circadian system in melatonin-proficient C3H and melatonin-deficient C57BL mice: a comparative investigation.
    Stehle JH; von Gall C; Korf HW
    Cell Tissue Res; 2002 Jul; 309(1):173-82. PubMed ID: 12111547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.