BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 12924484)

  • 1. Allergic bronchial asthma: airway inflammation and hyperresponsiveness.
    Sugita M; Kuribayashi K; Nakagomi T; Miyata S; Matsuyama T; Kitada O
    Intern Med; 2003 Aug; 42(8):636-43. PubMed ID: 12924484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interleukin-5 and eosinophils induce airway damage and bronchial hyperreactivity during allergic airway inflammation in BALB/c mice.
    Hogan SP; Koskinen A; Foster PS
    Immunol Cell Biol; 1997 Jun; 75(3):284-8. PubMed ID: 9243294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice.
    Gavett SH; O'Hearn DJ; Li X; Huang SK; Finkelman FD; Wills-Karp M
    J Exp Med; 1995 Nov; 182(5):1527-36. PubMed ID: 7595222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding asthma pathophysiology.
    Fireman P
    Allergy Asthma Proc; 2003; 24(2):79-83. PubMed ID: 12776439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tiarellic acid attenuates airway hyperresponsiveness and inflammation in a murine model of allergic asthma.
    Lee MY; Ahn KS; Lim HS; Yuk JE; Kwon OK; Lee KY; Lee HK; Oh SR
    Int Immunopharmacol; 2012 Jan; 12(1):117-24. PubMed ID: 22085848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of acute inflammatory and chronic structural asthma-like responses between C57BL/6 and BALB/c mice.
    Van Hove CL; Maes T; Cataldo DD; Guéders MM; Palmans E; Joos GF; Tournoy KG
    Int Arch Allergy Immunol; 2009; 149(3):195-207. PubMed ID: 19218812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of IL-5 in the development of allergen-induced airway hyperresponsiveness.
    Hamelmann E; Gelfand EW
    Int Arch Allergy Immunol; 1999 Sep; 120(1):8-16. PubMed ID: 10529584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Inflammation and remodeling of the distal airways: studies in humans and experimental models].
    Ramos-Barbón D; Parra-Arrondo A
    Arch Bronconeumol; 2011 Apr; 47 Suppl 2():2-9. PubMed ID: 21640278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IL-5 and IL-5 receptor in asthma.
    Kotsimbos AT; Hamid Q
    Mem Inst Oswaldo Cruz; 1997; 92 Suppl 2():75-91. PubMed ID: 9698919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marked airway eosinophilia prevents development of airway hyper-responsiveness during an allergic response in IL-5 transgenic mice.
    Kobayashi T; Iijima K; Kita H
    J Immunol; 2003 Jun; 170(11):5756-63. PubMed ID: 12759459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-inflammatory and anti-asthmatic effects of Viola mandshurica W. Becker (VM) ethanolic (EtOH) extract on airway inflammation in a mouse model of allergic asthma.
    Lee MY; Yuk JE; Kwon OK; Kim HS; Oh SR; Lee HK; Ahn KS
    J Ethnopharmacol; 2010 Jan; 127(1):159-64. PubMed ID: 19786084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of alpha tocopherol and probucol supplements on allergen-induced airway inflammation and hyperresponsiveness in a mouse model of allergic asthma.
    Okamoto N; Murata T; Tamai H; Tanaka H; Nagai H
    Int Arch Allergy Immunol; 2006; 141(2):172-80. PubMed ID: 16899985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mepacrine alleviates airway hyperresponsiveness and airway inflammation in a mouse model of asthma.
    Ram A; Mabalirajan U; Singh SK; Singh VP; Ghosh B
    Int Immunopharmacol; 2008 Jun; 8(6):893-9. PubMed ID: 18442795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A zinc chelator TPEN attenuates airway hyperresponsiveness and airway inflammation in mice in vivo.
    Fukuyama S; Matsunaga Y; Zhanghui W; Noda N; Asai Y; Moriwaki A; Matsumoto T; Nakano T; Matsumoto K; Nakanishi Y; Inoue H
    Allergol Int; 2011 Sep; 60(3):259-66. PubMed ID: 21364313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of heme oxygenase-1 activity reduces airway hyperresponsiveness and inflammation in a mouse model of asthma.
    Kuribayashi K; Iida S; Nakajima Y; Funaguchi N; Tabata C; Fukuoka K; Fujimori Y; Ihaku D; Nakano T
    J Asthma; 2015 Sep; 52(7):662-8. PubMed ID: 26133060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basophils and mast cells in airway inflammation and asthma.
    Denburg JA
    Can Respir J; 1998; 5 Suppl A():41A-4A. PubMed ID: 9753516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airway responsiveness in an allergic rabbit model.
    Keir SD; Spina D; Douglas G; Herd C; Page CP
    J Pharmacol Toxicol Methods; 2011; 64(2):187-95. PubMed ID: 21854860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Pathogenesis of bronchial asthma--unveiling new therapeutic prospects].
    Beeh KM; Buhl R
    Med Klin (Munich); 2001 Jan; 96(1):15-25. PubMed ID: 11210485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of tumstatin in asthmatic airways contributes to angiogenesis, inflammation, and hyperresponsiveness.
    Burgess JK; Boustany S; Moir LM; Weckmann M; Lau JY; Grafton K; Baraket M; Hansbro PM; Hansbro NG; Foster PS; Black JL; Oliver BG
    Am J Respir Crit Care Med; 2010 Jan; 181(2):106-15. PubMed ID: 19875687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of local pulmonary IFN-gamma expression in murine allergic airway inflammation.
    Koch M; Witzenrath M; Reuter C; Herma M; Schütte H; Suttorp N; Collins H; Kaufmann SH
    Am J Respir Cell Mol Biol; 2006 Aug; 35(2):211-9. PubMed ID: 16543606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.