These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12924573)

  • 1. A review of quantitative structure-activity relationship methods for the prediction of atmospheric oxidation of organic chemicals.
    Meylan WM; Howard PH
    Environ Toxicol Chem; 2003 Aug; 22(8):1724-32. PubMed ID: 12924573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-activity relationships for oxidation reactions of organic chemicals in water.
    Canonica S; Tratnyek PG
    Environ Toxicol Chem; 2003 Aug; 22(8):1743-54. PubMed ID: 12924575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ranking of volatile organic compounds for tropospheric degradability by oxidants: a QSPR approach.
    Gramatica P; Pilutti P; Papa E
    SAR QSAR Environ Res; 2002 Dec; 13(7-8):743-53. PubMed ID: 12570050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two new predictors combined with quantum chemical parameters for the selection of oxidants and degradation of organic contaminants: A QSAR modeling study.
    Cheng Z; Chen Q; Pontius FW; Gao X; Tan Y; Ma Y; Shen Z
    Chemosphere; 2020 Feb; 240():124928. PubMed ID: 31563101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment.
    Lee Y; von Gunten U
    Water Res; 2012 Dec; 46(19):6177-95. PubMed ID: 22939392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches.
    Gupta S; Basant N; Mohan D; Singh KP
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14034-46. PubMed ID: 27040550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification.
    Sudhakaran S; Amy GL
    Water Res; 2013 Mar; 47(3):1111-22. PubMed ID: 23260175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-reactivity relationships of hydroxyl radical rate constants for linear and cyclic volatile methylsiloxanes.
    Kim J; Xu S
    Environ Toxicol Chem; 2017 Dec; 36(12):3240-3245. PubMed ID: 28719005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiphase decomposition of novel oxygenated organics in aqueous and organic media.
    Moise T; Rudich Y; Rousse D; George C
    Environ Sci Technol; 2005 Jul; 39(14):5203-8. PubMed ID: 16082948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical).
    Lee Y; von Gunten U
    Water Res; 2010 Jan; 44(2):555-66. PubMed ID: 20015530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the oxidative capacity of the atmosphere of the south coast air basin of California. 2. HOx radical production.
    Griffin RJ
    Environ Sci Technol; 2004 Feb; 38(3):753-7. PubMed ID: 14968860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The OH-initiated oxidation of hexylene glycol and diacetone alcohol.
    Magneron I; Bossoutrot V; Mellouki A; Laverdet G; Le Bras G
    Environ Sci Technol; 2003 Sep; 37(18):4170-81. PubMed ID: 14524450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of the heterogeneous photo oxidation of the pesticide bupirimate by OH-radicals and ozone under atmospheric conditions.
    Bouya H; Errami M; Chakir A; Roth E
    Chemosphere; 2015 Sep; 134():301-6. PubMed ID: 25966935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a model for predicting hydroxyl radical reaction rate constants of organic chemicals at different temperatures.
    Li C; Yang X; Li X; Chen J; Qiao X
    Chemosphere; 2014 Jan; 95():613-8. PubMed ID: 24210594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ozonation of drinking water: part I. Oxidation kinetics and product formation.
    von Gunten U
    Water Res; 2003 Apr; 37(7):1443-67. PubMed ID: 12600374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method for predicting photocatalytic oxidation rates of organic compounds.
    Sattler ML; Liljestrand HM
    J Air Waste Manag Assoc; 2003 Jan; 53(1):3-12. PubMed ID: 12568248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric lifetimes and fates of selected fragrance materials and volatile model compounds.
    Aschmann SM; Arey J; Atkinson R; Simonich SL
    Environ Sci Technol; 2001 Sep; 35(18):3595-600. PubMed ID: 11783633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation.
    Librando V; Tringali G
    J Environ Manage; 2005 May; 75(3):275-82. PubMed ID: 15829369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2D-QSAR and 3D-QSAR simulations for the reaction rate constants of organic compounds in ozone-hydrogen peroxide oxidation.
    Cheng Z; Yang B; Chen Q; Tan Y; Gao X; Yuan T; Shen Z
    Chemosphere; 2018 Dec; 212():828-836. PubMed ID: 30193231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems.
    Kwan WP; Voelker BM
    Environ Sci Technol; 2003 Mar; 37(6):1150-8. PubMed ID: 12680668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.