BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 12924578)

  • 1. Overview of data and conceptual approaches for derivation of quantitative structure-activity relationships for ecotoxicological effects of organic chemicals.
    Bradbury SP; Russom CL; Ankley GT; Schultz TW; Walker JD
    Environ Toxicol Chem; 2003 Aug; 22(8):1789-98. PubMed ID: 12924578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-activity relationships and ecological risk assessment: an overview of predictive aquatic toxicology research.
    Bradbury SP
    Toxicol Lett; 1995 Sep; 79(1-3):229-37. PubMed ID: 7570660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for deriving pesticide aquatic life criteria.
    TenBrook PL; Tjeerdema RS; Hann P; Karkoski J
    Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a quantitative structure-activity relationship for chronic narcosis to fish.
    Claeys L; Iaccino F; Janssen CR; Van Sprang P; Verdonck F
    Environ Toxicol Chem; 2013 Oct; 32(10):2217-25. PubMed ID: 23775559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis.
    Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E
    Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri.
    Escher BI; Baumer A; Bittermann K; Henneberger L; König M; Kühnert C; Klüver N
    Environ Sci Process Impacts; 2017 Mar; 19(3):414-428. PubMed ID: 28197603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural alerts--a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay.
    von der Ohe PC; Kühne R; Ebert RU; Altenburger R; Liess M; Schüürmann G
    Chem Res Toxicol; 2005 Mar; 18(3):536-55. PubMed ID: 15777094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting modes of toxic action from chemical structure: an overview.
    Bradbury SP
    SAR QSAR Environ Res; 1994; 2(1-2):89-104. PubMed ID: 8790641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals.
    Escher BI; Abagyan R; Embry M; Klüver N; Redman AD; Zarfl C; Parkerton TF
    Environ Toxicol Chem; 2020 Feb; 39(2):269-286. PubMed ID: 31569266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-activity relationships for predicting potential ecological hazard of organic chemicals for use in regulatory risk assessments.
    Comber MH; Walker JD; Watts C; Hermens J
    Environ Toxicol Chem; 2003 Aug; 22(8):1822-8. PubMed ID: 12924581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aquatic toxicity (Pre)screening strategy for structurally diverse chemicals: global or local classification tree models?
    Gajewicz-Skretna A; Gromelski M; Wyrzykowska E; Furuhama A; Yamamoto H; Suzuki N
    Ecotoxicol Environ Saf; 2021 Jan; 208():111738. PubMed ID: 33396066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).
    Papa E; Villa F; Gramatica P
    J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fish.
    Moore DR; Breton RL; MacDonald DB
    Environ Toxicol Chem; 2003 Aug; 22(8):1799-809. PubMed ID: 12924579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Health-effects related structure-toxicity relationships: a paradigm for the first decade of the new millennium.
    Schultz TW; Seward JR
    Sci Total Environ; 2000 Apr; 249(1-3):73-84. PubMed ID: 10813448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSAR for baseline toxicity and classification of specific modes of action of ionizable organic chemicals in the zebrafish embryo toxicity test.
    Klüver N; Bittermann K; Escher BI
    Aquat Toxicol; 2019 Feb; 207():110-119. PubMed ID: 30557756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute aquatic toxicity of organic solvents modeled by QSARs.
    Levet A; Bordes C; Clément Y; Mignon P; Morell C; Chermette H; Marote P; Lantéri P
    J Mol Model; 2016 Dec; 22(12):288. PubMed ID: 27830479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSARs for aquatic toxicity: celebrating, extending and displaying the pioneering contributions of Ferguson, Konemann and Veith.
    Mackay D; Arnot JA; Celsie A; Orazietti A; Parnis JM
    SAR QSAR Environ Res; 2014; 25(5):343-55. PubMed ID: 24762009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds.
    Khan K; Benfenati E; Roy K
    Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of critical body residue QSARs for predicting organic chemical toxicity to aquatic organisms.
    Barron MG; Anderson MJ; Lipton J; Dixon DG
    SAR QSAR Environ Res; 1997; 6(1-2):47-62. PubMed ID: 9241865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors.
    Papa E; Dearden JC; Gramatica P
    Chemosphere; 2007 Feb; 67(2):351-8. PubMed ID: 17109926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.